Maximum likelihood estimation for reversible mechanistic network models.

Jonathan Larson, Jukka-Pekka Onnela
Author Information
  1. Jonathan Larson: Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, USA.
  2. Jukka-Pekka Onnela: Department of Biostatistics, Harvard University, Boston, Massachusetts 02115, USA.

Abstract

Mechanistic network models specify the mechanisms by which networks grow and change, allowing researchers to investigate complex systems using both simulation and analytical techniques. Unfortunately, it is difficult to write likelihoods for instances of graphs generated with mechanistic models, and thus it is near impossible to estimate the parameters using maximum likelihood estimation. In this paper, we propose treating the node sequence in a growing network model as an additional parameter, or as a missing random variable, and maximizing over the resulting likelihood. We develop this framework in the context of a simple mechanistic network model, used to study gene duplication and divergence, and test a variety of algorithms for maximizing the likelihood in simulated graphs. We also run the best-performing algorithm on one human protein-protein interaction network and four nonhuman protein-protein interaction networks. Although we focus on a specific mechanistic network model, the proposed framework is more generally applicable to reversible models.

References

  1. Nat Biotechnol. 2003 Jun;21(6):697-700 [PMID: 12740586]
  2. J Comput Graph Stat. 2023;32(3):1109-1118 [PMID: 37982131]
  3. PLoS Comput Biol. 2011 Apr;7(4):e1001119 [PMID: 21533211]
  4. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 May;67(5 Pt 2):056104 [PMID: 12786217]
  5. Proc Natl Acad Sci U S A. 2006 May 16;103(20):7566-70 [PMID: 16682633]
  6. Phys Rev Lett. 2021 Jan 22;126(3):038301 [PMID: 33543983]
  7. J Complex Netw. 2020 Apr;8(2):cnz024 [PMID: 32765880]
  8. Sci Rep. 2019 Nov 13;9(1):16674 [PMID: 31723196]
  9. Nature. 2020 Apr;580(7803):402-408 [PMID: 32296183]
  10. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  11. Sci Rep. 2021 Mar 4;11(1):5205 [PMID: 33664321]
  12. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3192-7 [PMID: 15728374]

Grants

  1. R01 AI138901/NIAID NIH HHS
  2. R35 CA220523/NCI NIH HHS
  3. T32 AI007358/NIAID NIH HHS
  4. T32 MH017119/NIMH NIH HHS

MeSH Term

Humans
Likelihood Functions
Algorithms
Computer Simulation
Protein Interaction Maps

Word Cloud

Created with Highcharts 10.0.0networkmodelsmechanisticlikelihoodmodelnetworksusinggraphsestimationmaximizingframeworkprotein-proteininteractionreversibleMechanisticspecifymechanismsgrowchangeallowingresearchersinvestigatecomplexsystemssimulationanalyticaltechniquesUnfortunatelydifficultwritelikelihoodsinstancesgeneratedthusnearimpossibleestimateparametersmaximumpaperproposetreatingnodesequencegrowingadditionalparametermissingrandomvariableresultingdevelopcontextsimpleusedstudygeneduplicationdivergencetestvarietyalgorithmssimulatedalsorunbest-performingalgorithmonehumanfournonhumanAlthoughfocusspecificproposedgenerallyapplicableMaximum

Similar Articles

Cited By