Adiabatic computing for optimal thermodynamic efficiency of information processing.

Salambô Dago, Sergio Ciliberto, Ludovic Bellon
Author Information
  1. Salambô Dago: Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France. ORCID
  2. Sergio Ciliberto: Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France. ORCID
  3. Ludovic Bellon: Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France. ORCID

Abstract

Landauer's principle makes a strong connection between information theory and thermodynamics by stating that erasing a one-bit memory at temperature [Formula: see text] requires an average energy larger than [Formula: see text], with [Formula: see text] Boltzmann's constant. This tiny limit has been saturated in model experiments using quasistatic processes. For faster operations, an overhead proportional to the processing speed and to the memory damping appears. In this article, we show that underdamped systems are a winning strategy to reduce this extra energetic cost. We prove both experimentally and theoretically that, in the limit of vanishing dissipation mechanisms in the memory, the physical system is thermally insulated from its environment during fast erasures, i.e., fast protocols are adiabatic as no heat is exchanged with the bath. Using a fast optimal erasure protocol, we also show that these adiabatic processes produce a maximum adiabatic temperature [Formula: see text], and that Landauer's bound for fast erasures in underdamped systems becomes the adiabatic bound: [Formula: see text].

Keywords

References

  1. Sci Adv. 2016 Mar 11;2(3):e1501492 [PMID: 26998519]
  2. Nature. 2012 Mar 07;483(7388):187-9 [PMID: 22398556]
  3. Phys Rev Lett. 2021 Apr 30;126(17):170601 [PMID: 33988419]
  4. Phys Rev Lett. 2020 Sep 4;125(10):100602 [PMID: 32955336]
  5. Rev Sci Instrum. 2013 Sep;84(9):095001 [PMID: 24089852]
  6. Proc Natl Acad Sci U S A. 2023 Sep 26;120(39):e2301742120 [PMID: 37729204]
  7. Phys Rev Lett. 2022 Feb 18;128(7):070604 [PMID: 35244423]
  8. Entropy (Basel). 2018 Apr 28;20(5): [PMID: 33265416]
  9. Rep Prog Phys. 2012 Dec;75(12):126001 [PMID: 23168354]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032117 [PMID: 26465436]
  11. Phys Rev E. 2020 Mar;101(3-1):032129 [PMID: 32289944]
  12. Phys Rev Lett. 2015 Mar 27;114(12):120601 [PMID: 25860731]
  13. J Chem Phys. 2008 Jul 14;129(2):024114 [PMID: 18624523]
  14. Phys Rev Lett. 2014 Nov 7;113(19):190601 [PMID: 25415891]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021127 [PMID: 20365550]

Grants

  1. ANR-18-CE30-0013/Agence Nationale de la Recherche (ANR)
  2. FQXi-IAF19-05/Foundational Questions Institute (FQI)

Word Cloud

Created with Highcharts 10.0.0[Formula:seetext]adiabaticfastinformationmemorylimitLandauer'stheorythermodynamicstemperatureprocessesprocessingshowunderdampedsystemserasuresoptimalboundprinciplemakesstrongconnectionstatingerasingone-bitrequiresaverageenergylargerBoltzmann'sconstanttinysaturatedmodelexperimentsusingquasistaticfasteroperationsoverheadproportionalspeeddampingappearsarticlewinningstrategyreduceextraenergeticcostproveexperimentallytheoreticallyvanishingdissipationmechanismsphysicalsystemthermallyinsulatedenvironmentieprotocolsheatexchangedbathUsingerasureprotocolalsoproducemaximumbecomesbound:AdiabaticcomputingthermodynamicefficiencyLandauer’sstochasticthermalnoise

Similar Articles

Cited By