epiAneufinder identifies copy number alterations from single-cell ATAC-seq data.

Akshaya Ramakrishnan, Aikaterini Symeonidi, Patrick Hanel, Katharina T Schmid, Maria L Richter, Michael Schubert, Maria Colomé-Tatché
Author Information
  1. Akshaya Ramakrishnan: Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. ORCID
  2. Aikaterini Symeonidi: Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. aikaterini.symeonidi@helmholtz-munich.de. ORCID
  3. Patrick Hanel: Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
  4. Katharina T Schmid: Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. ORCID
  5. Maria L Richter: Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. ORCID
  6. Michael Schubert: Oncode Institute, Division of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands. ORCID
  7. Maria Colomé-Tatché: Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. maria.colome@bmc.med.lmu.de.

Abstract

Single-cell open chromatin profiling via scATAC-seq has become a mainstream measurement of open chromatin in single-cells. Here we present epiAneufinder, an algorithm that exploits the read count information from scATAC-seq data to extract genome-wide copy number alterations (CNAs) for individual cells, allowing the study of CNA heterogeneity present in a sample at the single-cell level. Using different cancer scATAC-seq datasets, we show that epiAneufinder can identify intratumor clonal heterogeneity in populations of single cells based on their CNA profiles. We demonstrate that these profiles are concordant with the ones inferred from single-cell whole genome sequencing data for the same samples. EpiAneufinder allows the inference of single-cell CNA information from scATAC-seq data, without the need of additional experiments, unlocking a layer of genomic variation which is otherwise unexplored.

References

  1. Genome Biol. 2016 May 31;17(1):115 [PMID: 27246460]
  2. Cell Res. 2016 Mar;26(3):304-19 [PMID: 26902283]
  3. Cold Spring Harb Perspect Med. 2017 Jun 1;7(6): [PMID: 28213433]
  4. Cancer Cell. 2018 Apr 9;33(4):676-689.e3 [PMID: 29622463]
  5. Database (Oxford). 2019 Jan 1;2019: [PMID: 30951143]
  6. NAR Genom Bioinform. 2020 Jun;2(2):lqaa016 [PMID: 32215369]
  7. Nat Genet. 2019 May;51(5):824-834 [PMID: 31036964]
  8. Cancer Cell. 2008 Dec 9;14(6):431-3 [PMID: 19061834]
  9. Nat Commun. 2020 Jan 3;11(1):89 [PMID: 31900397]
  10. Bioessays. 2015 May;37(5):570-7 [PMID: 25739518]
  11. Nat Biotechnol. 2019 Aug;37(8):925-936 [PMID: 31375813]
  12. Sci Adv. 2021 Oct 15;7(42):eabg6045 [PMID: 34644115]
  13. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  14. EMBO Mol Med. 2020 Mar 6;12(3):e10941 [PMID: 32030896]
  15. Nat Commun. 2021 Sep 1;12(1):5228 [PMID: 34471111]
  16. Nature. 2018 Aug;560(7718):325-330 [PMID: 30089904]
  17. Bioinformatics. 2018 Sep 15;34(18):3217-3219 [PMID: 29897414]
  18. Genome Res. 2018 Aug;28(8):1217-1227 [PMID: 29898899]
  19. Annu Rev Med. 2010;61:437-55 [PMID: 20059347]
  20. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  21. Nat Rev Genet. 2020 Jan;21(1):44-62 [PMID: 31548659]
  22. Trends Genet. 2011 Nov;27(11):446-53 [PMID: 21872963]
  23. NPJ Precis Oncol. 2022 Jan 27;6(1):9 [PMID: 35087207]
  24. Nature. 2021 Feb;590(7846):486-491 [PMID: 33505028]
  25. Cancer Res. 2019 May 1;79(9):2111-2123 [PMID: 30877103]
  26. Nature. 2021 Sep;597(7875):250-255 [PMID: 34497389]
  27. Nature. 2021 Dec;600(7890):731-736 [PMID: 34819668]
  28. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  29. Genome Biol. 2020 Aug 17;21(1):208 [PMID: 32807205]
  30. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  31. Cell. 2020 Apr 16;181(2):442-459.e29 [PMID: 32302573]
  32. Nat Biotechnol. 2021 May;39(5):599-608 [PMID: 33462507]
  33. Nat Biotechnol. 2021 Oct;39(10):1259-1269 [PMID: 34017141]
  34. Sci Rep. 2019 Jun 27;9(1):9354 [PMID: 31249361]
  35. Nat Biotechnol. 2010 May;28(5):495-501 [PMID: 20436461]
  36. Nat Commun. 2022 Aug 20;13(1):4897 [PMID: 35986012]
  37. Cell. 2021 Sep 16;184(19):5053-5069.e23 [PMID: 34390642]
  38. Nat Commun. 2019 Jan 28;10(1):470 [PMID: 30692544]
  39. PLoS Comput Biol. 2020 Jul 13;16(7):e1008012 [PMID: 32658894]
  40. Nature. 2019 Nov;575(7784):699-703 [PMID: 31748743]
  41. Nat Commun. 2020 Aug 10;11(1):3987 [PMID: 32778678]

MeSH Term

Chromatin Immunoprecipitation Sequencing
DNA Copy Number Variations
Algorithms
Chromatin

Chemicals

Chromatin

Word Cloud

Created with Highcharts 10.0.0scATAC-seqdatasingle-cellepiAneufinderCNAopenchromatinpresentinformationcopynumberalterationscellsheterogeneityprofilesSingle-cellprofilingviabecomemainstreammeasurementsingle-cellsalgorithmexploitsreadcountextractgenome-wideCNAsindividualallowingstudysamplelevelUsingdifferentcancerdatasetsshowcanidentifyintratumorclonalpopulationssinglebaseddemonstrateconcordantonesinferredwholegenomesequencingsamplesEpiAneufinderallowsinferencewithoutneedadditionalexperimentsunlockinglayergenomicvariationotherwiseunexploredidentifiesATAC-seq

Similar Articles

Cited By