Progress in the field of hematopoietic stem cell-based therapies for inborn errors of immunity.

Danielle E Arnold, Sung-Yun Pai
Author Information
  1. Danielle E Arnold: Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.

Abstract

PURPOSE OF REVIEW: Hematopoietic stem cell-based therapies, including allogeneic hematopoietic cell transplantation (HCT) and autologous gene therapy (GT), have been used as curative therapy for many inborn errors of immunity (IEI). As the number of genetically defined IEI and the use of HCT and GT increase, valuable data on outcomes and approaches for specific disorders are available. We review recent progress in HCT and GT for IEI in this article.
RECENT FINDINGS: Novel approaches to prevention of allogeneic complications and experience in adolescents and young adults have expanded the use of HCT. Universal newborn screening for severe combined immunodeficiency (SCID) has led to improved outcome after HCT. Analysis of outcomes of HCT and GT for SCID, Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD) reveal risk factors for survival, the impact of specific conditioning regimens, and vector- or disease-specific impacts on efficacy and safety. Preclinical studies of GT and gene editing show potential for translation to the clinic.
SUMMARY: Emerging data on outcome after HCT for specific IEI support early evaluation and treatment, before development of co-morbidities. Data in large cooperative retrospective databases continues to yield valuable insights clinicians can use in patient selection and choice of therapy.

References

  1. JAMA. 2015 Apr 21;313(15):1550-63 [PMID: 25898053]
  2. Lancet. 2004 Dec 18-31;364(9452):2181-7 [PMID: 15610804]
  3. J Allergy Clin Immunol. 2022 May;149(5):1744-1754.e8 [PMID: 34718043]
  4. Nature. 2010 Sep 16;467(7313):318-22 [PMID: 20844535]
  5. Sci Transl Med. 2022 Oct 26;14(668):eabn5811 [PMID: 36288278]
  6. J Clin Immunol. 2021 Jan;41(1):38-50 [PMID: 33006109]
  7. Transplant Cell Ther. 2022 Mar;28(3):172.e1-172.e4 [PMID: 34875404]
  8. Blood. 2022 Mar 31;139(13):2066-2079 [PMID: 35100336]
  9. Blood. 2022 Aug 18;140(7):685-705 [PMID: 35671392]
  10. Nat Med. 2022 Jan;28(1):71-80 [PMID: 35075289]
  11. Blood. 2020 Sep 3;136(10):1201-1211 [PMID: 32614953]
  12. J Allergy Clin Immunol. 2022 Aug;150(2):456-466 [PMID: 34920033]
  13. Blood. 2022 Oct 6;140(14):1635-1649 [PMID: 35344580]
  14. Blood. 2023 Oct 12;142(15):1281-1296 [PMID: 37478401]
  15. Sci Transl Med. 2016 Apr 20;8(335):335ra57 [PMID: 27099176]
  16. J Clin Invest. 2008 Sep;118(9):3132-42 [PMID: 18688285]
  17. N Engl J Med. 2022 Dec 22;387(25):2344-2355 [PMID: 36546626]
  18. Biol Blood Marrow Transplant. 2017 Aug;23(8):1229-1240 [PMID: 28479164]
  19. Blood. 2023 Jan 5;141(1):60-71 [PMID: 36167031]
  20. Blood. 2018 Oct 25;132(17):1737-1749 [PMID: 30154114]
  21. J Allergy Clin Immunol. 2022 Mar;149(3):1097-1104.e2 [PMID: 34375618]
  22. N Engl J Med. 2002 Apr 18;346(16):1185-93 [PMID: 11961146]
  23. Blood. 2020 Jun 4;135(23):2094-2105 [PMID: 32268350]
  24. Blood. 2010 Dec 23;116(26):5824-31 [PMID: 20855862]
  25. Lancet Haematol. 2019 May;6(5):e239-e253 [PMID: 30981783]
  26. Science. 2013 Aug 23;341(6148):1233151 [PMID: 23845947]
  27. J Clin Immunol. 2023 Feb;43(2):440-451 [PMID: 36329240]
  28. Blood. 2023 Mar 2;141(9):1007-1022 [PMID: 36332160]
  29. N Engl J Med. 2014 Jul 31;371(5):434-46 [PMID: 25075835]
  30. Blood Adv. 2020 May 12;4(9):1998-2010 [PMID: 32384542]
  31. N Engl J Med. 2019 Apr 18;380(16):1525-1534 [PMID: 30995372]
  32. Cell Rep Med. 2023 Feb 21;4(2):100919 [PMID: 36706754]
  33. Blood Adv. 2023 May 9;7(9):1823-1830 [PMID: 36453638]
  34. Blood. 2017 Dec 21;130(25):2718-2727 [PMID: 29021228]
  35. J Clin Invest. 2008 Sep;118(9):3143-50 [PMID: 18688286]
  36. Nat Med. 2020 Feb;26(2):200-206 [PMID: 31988463]
  37. Sci Transl Med. 2014 Mar 12;6(227):227ra33 [PMID: 24622513]
  38. Blood. 2023 Dec 14;142(24):2105-2118 [PMID: 37562003]
  39. Bone Marrow Transplant. 2022 Apr;57(4):668-670 [PMID: 35121808]
  40. J Clin Immunol. 2022 Jan;42(1):36-45 [PMID: 34586554]
  41. Bone Marrow Transplant. 2022 Oct;57(10):1520-1530 [PMID: 35794259]
  42. Nat Commun. 2022 Jun 28;13(1):3710 [PMID: 35764638]
  43. Science. 2003 Oct 17;302(5644):415-9 [PMID: 14564000]
  44. Lancet. 2023 Jul 8;402(10396):129-140 [PMID: 37352885]
  45. J Allergy Clin Immunol. 2010 Sep;126(3):602-10.e1-11 [PMID: 20673987]
  46. Hum Gene Ther. 2022 Dec;33(23-24):1293-1304 [PMID: 36094106]
  47. N Engl J Med. 2014 Oct 9;371(15):1407-17 [PMID: 25295500]
  48. N Engl J Med. 2010 Nov 11;363(20):1918-27 [PMID: 21067383]

Grants

  1. ZIA BC012039/Intramural NIH HHS
  2. ZIA BC012040/Intramural NIH HHS

MeSH Term

Infant, Newborn
Adolescent
Young Adult
Humans
Retrospective Studies
Hematopoietic Stem Cells
Severe Combined Immunodeficiency
Hematopoietic Stem Cell Transplantation
Granulomatous Disease, Chronic

Word Cloud

Created with Highcharts 10.0.0HCTGTIEItherapyusespecificstemcell-basedtherapiesallogeneichematopoieticgeneinbornerrorsimmunityvaluabledataoutcomesapproachesSCIDoutcomePURPOSEOFREVIEW:HematopoieticincludingcelltransplantationautologoususedcurativemanynumbergeneticallydefinedincreasedisordersavailablereviewrecentprogressarticleRECENTFINDINGS:NovelpreventioncomplicationsexperienceadolescentsyoungadultsexpandedUniversalnewbornscreeningseverecombinedimmunodeficiencyledimprovedAnalysisWiskott-AldrichsyndromeWASchronicgranulomatousdiseaseCGDrevealriskfactorssurvivalimpactconditioningregimensvector-disease-specificimpactsefficacysafetyPreclinicalstudieseditingshowpotentialtranslationclinicSUMMARY:Emergingsupportearlyevaluationtreatmentdevelopmentco-morbiditiesDatalargecooperativeretrospectivedatabasescontinuesyieldinsightsclinicianscanpatientselectionchoiceProgressfield

Similar Articles

Cited By