Prenatal exposures to organophosphate ester metabolite mixtures and children's neurobehavioral outcomes in the MADRES pregnancy cohort.

Ixel Hernandez-Castro, Sandrah P Eckel, Caitlin G Howe, Zhongzheng Niu, Kurunthachalam Kannan, Morgan Robinson, Helen B Foley, Tingyu Yang, Mario J Vigil, Xinci Chen, Brendan Grubbs, Deborah Lerner, Nathana Lurvey, Laila Al-Marayati, Rima Habre, Genevieve F Dunton, Shohreh F Farzan, Max T Aung, Carrie V Breton, Theresa M Bastain
Author Information
  1. Ixel Hernandez-Castro: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  2. Sandrah P Eckel: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  3. Caitlin G Howe: Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  4. Zhongzheng Niu: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  5. Kurunthachalam Kannan: Wadsworth Center, New York State Department of Health, Albany, NY, USA.
  6. Morgan Robinson: Wadsworth Center, New York State Department of Health, Albany, NY, USA.
  7. Helen B Foley: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  8. Tingyu Yang: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  9. Mario J Vigil: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  10. Xinci Chen: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  11. Brendan Grubbs: Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  12. Deborah Lerner: Eisner Health, Los Angeles, CA, USA.
  13. Nathana Lurvey: Eisner Health, Los Angeles, CA, USA.
  14. Laila Al-Marayati: Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
  15. Rima Habre: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  16. Genevieve F Dunton: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  17. Shohreh F Farzan: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  18. Max T Aung: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  19. Carrie V Breton: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA.
  20. Theresa M Bastain: Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N. Soto Street, Los Angeles, CA, USA. bastain@usc.edu.

Abstract

BACKGROUND: Evidence suggests organophosphate esters (OPEs) are neurotoxic; however, the epidemiological literature remains scarce. We investigated whether prenatal exposures to OPEs were associated with child neurobehavior in the MADRES cohort.
METHODS: We measured nine OPE metabolites in 204 maternal urine samples (gestational age at collection: 31.4 ± 1.8 weeks). Neurobehavior problems were assessed among 36-month-old children using the Child Behavior Checklist's (CBCL) three composite scales [internalizing, externalizing, and total problems]. We examined associations between tertiles of prenatal OPE metabolites (> 50% detection) and detect/non-detect categories (< 50% detection) and CBCL composite scales using linear regression and generalized additive models. We also examined mixtures for widely detected OPEs (n = 5) using Bayesian kernel machine regression.
RESULTS: Maternal participants with detectable versus non-detectable levels of bis(2-methylphenyl) phosphate (BMPP) had children with 42% (95% CI: 4%, 96%) higher externalizing, 45% (-2%, 114%) higher internalizing, and 35% (3%, 78%) higher total problems. Participants in the second versus first tertile of bis(butoxethyl) phosphate (BBOEP) had children with 43% (-1%, 109%) higher externalizing scores. Bis(1-chloro-2-propyl) phosphate (BCIPP) and child sex had a statistically significant interaction in internalizing (p = 0.02) and total problems (p = 0.03) models, with 120% (23%, 295%) and 57% (6%, 134%) higher scores in the third versus first BCIPP tertile among males. Among females, detectable vs non-detectable levels of prenatal BMPP were associated with 69% higher externalizing scores (5%, 170%) while the third versus first tertile of prenatal BBOEP was associated with 45% lower total problems (-68%, -6%). Although the metabolite mixture and each CBCL outcome had null associations, we observed marginal associations between di-n-butyl phosphate and di-isobutyl phosphate (DNBP + DIBP) and higher internalizing scores (0.15; 95% CrI: -0.02, 0.32), holding other metabolites at their median.
CONCLUSIONS: Our results generally suggest adverse and sex-specific effects of prenatal exposure to previously understudied OPEs on neurobehavioral outcomes in 36-month children, providing evidence of potential OPE neurotoxicity.

Keywords

References

  1. Biostatistics. 2015 Jul;16(3):493-508 [PMID: 25532525]
  2. Environ Sci Technol. 2014;48(1):63-70 [PMID: 24308350]
  3. Sci Total Environ. 2019 Feb 1;649:247-263 [PMID: 30173033]
  4. Chemosphere. 2017 Dec;189:574-580 [PMID: 28963974]
  5. Environ Health. 2018 Aug 20;17(1):67 [PMID: 30126431]
  6. Neurotoxicol Teratol. 2015 Nov-Dec;52(Pt B):181-93 [PMID: 26386178]
  7. Curr Epidemiol Rep. 2020 Dec;7(4):220-236 [PMID: 33409120]
  8. Environ Sci Technol Lett. 2017 Mar 14;4(3):112-118 [PMID: 28317001]
  9. Environ Int. 2021 Jan;146:106215 [PMID: 33113466]
  10. Environ Sci Technol. 2011 Jun 15;45(12):5323-31 [PMID: 21591615]
  11. Chemosphere. 2020 Aug;252:126470 [PMID: 32443258]
  12. Toxicol Appl Pharmacol. 1990 Nov;106(2):254-69 [PMID: 2256115]
  13. Environ Sci Process Impacts. 2019 Jan 23;21(1):124-132 [PMID: 30427354]
  14. Environ Health Perspect. 2020 Nov;128(11):117001 [PMID: 33141601]
  15. Environ Sci Technol. 2012 Dec 18;46(24):13056-66 [PMID: 23185960]
  16. Environ Toxicol. 2016 Oct;31(10):1241-9 [PMID: 25846749]
  17. Environ Int. 2019 Jan;122:213-221 [PMID: 30449628]
  18. Lancet Neurol. 2014 Mar;13(3):330-8 [PMID: 24556010]
  19. J Intern Med. 2007 May;261(5):412-7 [PMID: 17444880]
  20. BMC Pregnancy Childbirth. 2019 May 30;19(1):189 [PMID: 31146718]
  21. Environ Health. 2017 Mar 9;16(1):23 [PMID: 28274271]
  22. Environ Int. 2012 Nov 15;49:57-82 [PMID: 22982223]
  23. Sci Total Environ. 2016 Jun 1;554-555:211-7 [PMID: 26950635]
  24. Toxicology. 2017 Sep 1;390:32-42 [PMID: 28851516]
  25. Environ Sci Technol. 2017 May 2;51(9):4860-4869 [PMID: 28406624]
  26. Fundam Appl Toxicol. 1987 Nov;9(4):698-704 [PMID: 2446940]
  27. Toxicol Appl Pharmacol. 2011 Nov 1;256(3):281-9 [PMID: 21255595]
  28. Environ Int. 2020 Mar;136:105461 [PMID: 31931349]
  29. Environ Sci Technol Lett. 2019 Nov 12;6(11):638-649 [PMID: 32494578]
  30. Chemosphere. 2018 Jun;200:649-659 [PMID: 29518649]
  31. Environ Int. 2021 Sep;154:106549 [PMID: 33910116]
  32. Arch Toxicol. 2021 Jan;95(1):207-228 [PMID: 33078273]
  33. Chemosphere. 2016 Jun;153:78-90 [PMID: 27010170]
  34. Environ Res. 2021 May;196:110388 [PMID: 33129852]
  35. Int J Epidemiol. 2016 Dec 1;45(6):1887-1894 [PMID: 28089956]
  36. Toxicol Sci. 2021 May 27;181(2):215-228 [PMID: 33677611]
  37. Environ Int. 2017 Jan;98:96-101 [PMID: 27745946]
  38. Ment Retard Dev Disabil Res Rev. 2005;11(1):14-20 [PMID: 15856444]
  39. Environ Sci Technol. 2021 Mar 2;55(5):3091-3100 [PMID: 33397100]
  40. Environ Sci Technol. 2012 Mar 20;46(6):3127-34 [PMID: 22332897]
  41. Toxicol Sci. 2019 Jun 1;169(2):436-455 [PMID: 30816951]
  42. Environ Int. 2014 Feb;63:169-72 [PMID: 24316320]
  43. Neurotoxicology. 2019 Jul;73:150-160 [PMID: 30951742]
  44. Int J Mol Sci. 2019 Jun 12;20(12): [PMID: 31212857]
  45. Sci Total Environ. 2017 May 15;586:782-791 [PMID: 28215802]
  46. Environ Sci Technol. 2015 Apr 21;49(8):5123-32 [PMID: 25826601]
  47. Eur Thyroid J. 2019 Dec;8(6):283-292 [PMID: 31934553]
  48. Aquat Toxicol. 2018 Oct;203:80-87 [PMID: 30096480]
  49. Environ Pollut. 2011 Dec;159(12):3653-9 [PMID: 21835517]
  50. Water Res. 2012 Feb 1;46(2):531-8 [PMID: 22142598]
  51. Environ Health. 2017 Apr 11;16(1):40 [PMID: 28399857]
  52. Environ Health Perspect. 2021 Oct;129(10):105001 [PMID: 34612677]
  53. Toxicol Sci. 2016 Oct;153(2):246-57 [PMID: 27370412]
  54. Natl Toxicol Program Tech Rep Ser. 1991 May;391:1-233 [PMID: 12637968]
  55. J Child Psychol Psychiatry. 2016 Jul;57(7):775-93 [PMID: 26987761]
  56. Toxicol Sci. 2014 Nov;142(1):274-84 [PMID: 25199799]
  57. Environ Int. 2018 Jan;110:32-41 [PMID: 29102155]
  58. Sci Total Environ. 2013 Apr 1;449:29-36 [PMID: 23403100]
  59. Best Pract Res Clin Endocrinol Metab. 2014 Mar;28(2):221-32 [PMID: 24629863]
  60. Sci Rep. 2017 Aug 2;7(1):7118 [PMID: 28769031]
  61. Molecules. 2022 Jan 17;27(2): [PMID: 35056888]
  62. Endocr Connect. 2018 Feb;7(2):305-324 [PMID: 29351906]
  63. Environ Sci Technol. 2017 Jun 6;51(11):6489-6497 [PMID: 28516762]
  64. Arch Toxicol. 2020 Feb;94(2):541-552 [PMID: 31894355]
  65. Toxicol Sci. 2020 Jul 1;176(1):203-223 [PMID: 32243540]
  66. Neurotoxicology. 2016 Mar;53:271-281 [PMID: 26854185]
  67. J Hazard Mater. 2021 Apr 15;408:124856 [PMID: 33383451]
  68. Environ Sci Technol. 2009 Oct 1;43(19):7490-5 [PMID: 19848166]
  69. Curr Environ Health Rep. 2019 Dec;6(4):201-213 [PMID: 31755035]
  70. Environ Sci Technol. 2022 May 17;56(10):6560-6573 [PMID: 35536918]

Grants

  1. U2C ES026542/NIEHS NIH HHS
  2. P30 ES007048/NIEHS NIH HHS
  3. R00 ES030400/NIEHS NIH HHS
  4. P50 MD015705/NIMHD NIH HHS
  5. UH3 OD023287/NIH HHS
  6. P50 ES026086/NIEHS NIH HHS

MeSH Term

Female
Male
Pregnancy
Child
Humans
Infant
Child, Preschool
Bayes Theorem
Prenatal Exposure Delayed Effects
Phosphates
Neurotoxicity Syndromes
Organophosphates
Esters

Chemicals

bis(2-butoxyethyl)phosphate
bis(1-chloro-2-propyl)phosphate
Phosphates
Organophosphates
Esters

Word Cloud

Created with Highcharts 10.0.0higherprenatalphosphateOPEsOPEproblemschildrenexternalizingtotalversusscoresassociatedmetabolitesusingCBCLassociationsinternalizingfirsttertileorganophosphateestersexposureschildMADREScohortNeurobehavioramongcompositescalesexamineddetectionregressionmodelsmixturesdetectablenon-detectablelevelsbisBMPP95%45%BBOEPBCIPPp = 002thirdmetabolite0neurobehavioraloutcomesBACKGROUND:EvidencesuggestsneurotoxichoweverepidemiologicalliteratureremainsscarceinvestigatedwhetherneurobehaviorMETHODS:measurednine204maternalurinesamplesgestationalagecollection:314 ± 18 weeksassessed36-month-oldChildBehaviorChecklist'sthree[internalizingproblems]tertiles> 50%detect/non-detectcategories< 50%lineargeneralizedadditivealsowidelydetectedn = 5BayesiankernelmachineRESULTS:Maternalparticipants2-methylphenyl42%CI:4%96%-2%114%35%3%78%Participantssecondbutoxethyl43%-1%109%Bis1-chloro-2-propylsexstatisticallysignificantinteraction03120%23%295%57%6%134%malesAmongfemalesvs69%5%170%lower-68%-6%Althoughmixtureoutcomenullobservedmarginaldi-n-butyldi-isobutylDNBP + DIBP15CrI:-032holdingmedianCONCLUSIONS:resultsgenerallysuggestadversesex-specificeffectsexposurepreviouslyunderstudied36-monthprovidingevidencepotentialneurotoxicityPrenatalesterchildren'spregnancyEarlychildhoodMixturesOPFRsOrganophosphate

Similar Articles

Cited By