Urinary peptides provide information about the risk of mortality across a spectrum of diseases and scenarios.

Felix Keller, Joachim Beige, Justyna Siwy, Alexandre Mebazaa, Dewei An, Harald Mischak, Joost P Schanstra, Marika Mokou, Paul Perco, Jan A Staessen, Antonia Vlahou, Agnieszka Latosinska
Author Information
  1. Felix Keller: Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020, Innsbruck, Austria.
  2. Joachim Beige: Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany.
  3. Justyna Siwy: Mosaiques Diagnostics GmbH, 30659, Hannover, Germany.
  4. Alexandre Mebazaa: Department of Anaesthesiology and Critical Care, Hôpital Lariboisière, AP-HP, 75010, Paris, France.
  5. Dewei An: Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, 2800, Mechelen, Belgium.
  6. Harald Mischak: Mosaiques Diagnostics GmbH, 30659, Hannover, Germany.
  7. Joost P Schanstra: Institute of Cardiovascular and Metabolic Disease, U1297, Institut National de la Santé et de la Recherche Médicale, 31432, Toulouse, France.
  8. Marika Mokou: Mosaiques Diagnostics GmbH, 30659, Hannover, Germany.
  9. Paul Perco: Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020, Innsbruck, Austria.
  10. Jan A Staessen: Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, 2800, Mechelen, Belgium.
  11. Antonia Vlahou: Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece.
  12. Agnieszka Latosinska: Mosaiques Diagnostics GmbH, 30659, Hannover, Germany. latosinska@mosaiques-diagnostics.com. ORCID

Abstract

BACKGROUND: There is evidence of pre-established vulnerability in individuals that increases the risk of their progression to severe disease or death, although the mechanisms causing this are still not fully understood. Previous research has demonstrated that a urinary peptide classifier (COV50) predicts disease progression and death from SARS-CoV-2 at an early stage, indicating that the outcome prediction may be partly due to vulnerabilities that are already present. The aim of this study is to examine the ability of COV50 to predict future non-COVID-19-related mortality, and evaluate whether the pre-established vulnerability can be generic and explained on a molecular level by urinary peptides.
METHODS: Urinary proteomic data from 9193 patients (1719 patients sampled at intensive care unit (ICU) admission and 7474 patients with other diseases (non-ICU)) were extracted from the Human Urinary Proteome Database. The previously developed COV50 classifier, a urinary proteomics biomarker panel consisting of 50 peptides, was applied to all datasets. The association of COV50 scoring with mortality was evaluated.
RESULTS: In the ICU group, an increase in the COV50 score of one unit resulted in a 20% higher relative risk of death [adjusted HR 1.2 (95% CI 1.17-1.24)]. The same increase in COV50 in non-ICU patients resulted in a higher relative risk of 61% [adjusted HR 1.61 (95% CI 1.47-1.76)], consistent with adjusted meta-analytic HR estimate of 1.55 [95% CI 1.39-1.73]. The most notable and significant changes associated with future fatal events were reductions of specific collagen fragments, most of collagen alpha I (I).
CONCLUSION: The COV50 classifier is predictive of death in the absence of SARS-CoV-2 infection, suggesting that it detects pre-existing vulnerability. This prediction is mainly based on collagen fragments, possibly reflecting disturbances in the integrity of the extracellular matrix. These data may serve as a basis for proteomics-guided intervention aiming towards manipulating/ improving collagen turnover, thereby reducing the risk of death.

Keywords

References

  1. Nephrol Dial Transplant. 2017 Nov 01;32(11):1866-1873 [PMID: 27507891]
  2. J Immunol Res. 2015;2015:697193 [PMID: 26770993]
  3. Crit Care. 2022 Nov 7;26(1):344 [PMID: 36345008]
  4. J Hypertens. 2010 Nov;28(11):2316-22 [PMID: 20811296]
  5. Nat Rev Drug Discov. 2020 Jan;19(1):57-75 [PMID: 31548636]
  6. PLoS One. 2016 Jun 16;11(6):e0157167 [PMID: 27308822]
  7. Clin Transl Med. 2021 Jan;11(1):e267 [PMID: 33463057]
  8. Biochim Biophys Acta. 2014 May;1844(5):884-98 [PMID: 23831154]
  9. Eur J Heart Fail. 2021 Nov;23(11):1875-1887 [PMID: 33881206]
  10. Inflamm Regen. 2020 Oct 1;40:37 [PMID: 33014208]
  11. Int J Cardiol. 2014 Sep;176(1):158-65 [PMID: 25065337]
  12. JAMA. 2013 Mar 6;309(9):896-908 [PMID: 23462786]
  13. Proteomics Clin Appl. 2021 Jan;15(1):e2000029 [PMID: 32618437]
  14. Electrophoresis. 2019 Sep;40(18-19):2294-2308 [PMID: 31054149]
  15. Hepatology. 2015 May;61(5):1547-54 [PMID: 25125077]
  16. J Am Heart Assoc. 2022 Apr 19;11(8):e024769 [PMID: 35411793]
  17. Crit Care. 2020 Jan 9;24(1):10 [PMID: 31918764]
  18. Surg Clin North Am. 1995 Apr;75(2):257-77 [PMID: 7899997]
  19. Nephrol Dial Transplant. 2021 Apr 26;36(5):811-818 [PMID: 31837226]
  20. PLoS One. 2017 Sep 7;12(9):e0184443 [PMID: 28880921]
  21. Clin Biochem. 2013 Apr;46(6):432-43 [PMID: 23041249]
  22. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34864875]
  23. PLoS One. 2010 Oct 20;5(10):e13421 [PMID: 20975990]
  24. Proteomics. 2021 Oct;21(20):e2100133 [PMID: 34383378]
  25. Thromb Res. 2021 Jun;202:191-198 [PMID: 33894421]
  26. Lancet Healthy Longev. 2021 Nov;2(11):e690-e703 [PMID: 34766101]
  27. Lancet Digit Health. 2022 Oct;4(10):e727-e737 [PMID: 36057526]
  28. Expert Rev Proteomics. 2021 Feb;18(2):105-118 [PMID: 33779460]
  29. BMC Anesthesiol. 2015 Oct 12;15:143 [PMID: 26459405]
  30. Crit Care. 2018 Jan 18;22(1):8 [PMID: 29347987]
  31. Int J Proteomics. 2015;2015:782798 [PMID: 26693351]
  32. Cardiovasc Diabetol. 2018 Apr 6;17(1):50 [PMID: 29625564]
  33. J Am Soc Nephrol. 2012 Jan;23(1):123-30 [PMID: 22034636]
  34. Proteomics Clin Appl. 2010 Apr;4(4):464-78 [PMID: 21137064]
  35. Lancet Diabetes Endocrinol. 2020 Apr;8(4):301-312 [PMID: 32135136]
  36. Rev Med Virol. 2021 Jan;31(1):1-10 [PMID: 32845042]
  37. Eur Heart J. 2012 Sep;33(18):2342-50 [PMID: 22789915]
  38. EClinicalMedicine. 2021 Jun;36:100883 [PMID: 33969282]
  39. Molecules. 2021 Nov 30;26(23): [PMID: 34885840]
  40. Injury. 2022 Jul;53(7):2400-2412 [PMID: 35577600]
  41. Nephrol Dial Transplant. 2021 Dec 31;37(1):42-52 [PMID: 33313853]
  42. Diabet Med. 2021 Sep;38(9):e14634 [PMID: 34228837]
  43. Mol Med. 2023 Jan 26;29(1):13 [PMID: 36703108]
  44. Nat Rev Nephrol. 2020 Oct;16(10):565-567 [PMID: 32753739]
  45. Clin Cancer Res. 2016 Aug 15;22(16):4077-86 [PMID: 27026199]
  46. J Am Coll Cardiol. 2011 Sep 13;58(12):1271-9 [PMID: 21903062]
  47. Proteomics Clin Appl. 2018 Sep;12(5):e1700163 [PMID: 29611317]
  48. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]
  49. PLoS One. 2017 Mar 8;12(3):e0172036 [PMID: 28273075]
  50. Cancers (Basel). 2021 Jul 27;13(15): [PMID: 34359689]

MeSH Term

Humans
COVID-19
Proteomics
SARS-CoV-2
Collagen Type I
Peptides

Chemicals

Collagen Type I
Peptides

Word Cloud

Created with Highcharts 10.0.0COV501riskdeathUrinarypatientscollagenvulnerabilityurinaryclassifiermortalitypeptidesHRCIpre-establishedprogressiondiseaseSARS-CoV-2predictionmayfuturedataunitICUdiseasesnon-ICUincreaseresultedhigherrelative[adjusted95%]fragmentsBACKGROUND:evidenceindividualsincreasesseverealthoughmechanismscausingstillfullyunderstoodPreviousresearchdemonstratedpeptidepredictsearlystageindicatingoutcomepartlyduevulnerabilitiesalreadypresentaimstudyexamineabilitypredictnon-COVID-19-relatedevaluatewhethercangenericexplainedmolecularlevelMETHODS:proteomic91931719sampledintensivecareadmission7474extractedHumanProteomeDatabasepreviouslydevelopedproteomicsbiomarkerpanelconsisting50applieddatasetsassociationscoringevaluatedRESULTS:groupscoreone20%217-12461%6147-176consistentadjustedmeta-analyticestimate55[95%39-173]notablesignificantchangesassociatedfataleventsreductionsspecificalphaCONCLUSION:predictiveabsenceinfectionsuggestingdetectspre-existingmainlybasedpossiblyreflectingdisturbancesintegrityextracellularmatrixservea basisproteomics-guidedinterventionaimingtowardsmanipulating/improvingturnovertherebyreducingprovideinformationacrossspectrumscenariosDeathMassspectrometryPeptidomicsPersonalisedmedicinebiomarkers

Similar Articles

Cited By