The phytomicrobiome: solving plant stress tolerance under climate change.

Abdul Latif Khan
Author Information
  1. Abdul Latif Khan: Department of Engineering Technology, University of Houston, Houston, TX, United States.

Abstract

With extraordinary global climate changes, increased episodes of extreme conditions result in continuous but complex interaction of environmental variables with plant life. Exploring natural phytomicrobiome species can provide a crucial resource of beneficial microbes that can improve plant growth and productivity through nutrient uptake, secondary metabolite production, and resistance against pathogenicity and abiotic stresses. The phytomicrobiome composition, diversity, and function strongly depend on the plant's genotype and climatic conditions. Currently, most studies have focused on elucidating microbial community abundance and diversity in the phytomicrobiome, covering bacterial communities. However, least is known about understanding the holistic phytomicrobiome composition and how they interact and function in stress conditions. This review identifies several gaps and essential questions that could enhance understanding of the complex interaction of microbiome, plant, and climate change. Utilizing eco-friendly approaches of naturally occurring synthetic microbial communities that enhance plant stress tolerance and leave fewer carbon-foot prints has been emphasized. However, understanding the mechanisms involved in stress signaling and responses by phytomicrobiome species under spatial and temporal climate changes is extremely important. Furthermore, the bacterial and fungal biome have been studied extensively, but the holistic interactome with archaea, viruses, oomycetes, protozoa, algae, and nematodes has seldom been studied. The inter-kingdom diversity, function, and potential role in improving environmental stress responses of plants are considerably important. In addition, much remains to be understood across organismal and ecosystem-level responses under dynamic and complex climate change conditions.

Keywords

References

  1. Microb Ecol. 2023 Apr;85(3):1113-1135 [PMID: 36319743]
  2. J Microbiol. 2014 Aug;52(8):689-95 [PMID: 24994010]
  3. Microbiome. 2018 Mar 27;6(1):58 [PMID: 29587885]
  4. Nat Microbiol. 2021 Feb;6(2):138-142 [PMID: 33510435]
  5. Front Microbiol. 2022 Oct 06;13:912701 [PMID: 36274695]
  6. Mol Plant Microbe Interact. 2022 Nov;35(11):977-988 [PMID: 35876747]
  7. Trends Biotechnol. 2019 Feb;37(2):140-151 [PMID: 30587413]
  8. Nat Chem Biol. 2017 Jan;13(1):69-74 [PMID: 27842068]
  9. FEMS Microbiol Ecol. 2020 Sep 1;96(9): [PMID: 32573682]
  10. Nature. 2017 Nov 23;551(7681):457-463 [PMID: 29088705]
  11. J Agric Food Chem. 2021 Oct 20;69(41):12111-12125 [PMID: 34610745]
  12. Microorganisms. 2020 Feb 05;8(2): [PMID: 32033333]
  13. ISME J. 2018 Jun;12(6):1496-1507 [PMID: 29520025]
  14. Annu Rev Microbiol. 2020 Sep 8;74:81-100 [PMID: 32530732]
  15. ISME J. 2022 Nov;16(11):2622-2632 [PMID: 35842464]
  16. FEMS Microbiol Ecol. 2020 Mar 1;96(3): [PMID: 32006018]
  17. Curr Biol. 2017 Sep 11;27(17):R890-R896 [PMID: 28898660]
  18. New Phytol. 2013 Apr;198(1):264-273 [PMID: 23347044]
  19. Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14552-14560 [PMID: 32513689]
  20. Biotechnol Rep (Amst). 2020 Feb 01;25:e00425 [PMID: 32099821]
  21. Microb Biotechnol. 2021 Mar;14(2):488-502 [PMID: 32762153]
  22. Nat Commun. 2018 Aug 2;9(1):3033 [PMID: 30072764]
  23. Microorganisms. 2023 Feb 03;11(2): [PMID: 36838356]
  24. Extremophiles. 2018 Jul;22(4):665-673 [PMID: 29687212]
  25. Biology (Basel). 2022 Dec 07;11(12): [PMID: 36552290]
  26. Front Plant Sci. 2021 Mar 02;12:621276 [PMID: 33737943]
  27. Front Microbiol. 2023 May 19;14:1167839 [PMID: 37275168]
  28. Mol Plant Microbe Interact. 2012 Feb;25(2):241-9 [PMID: 21942451]
  29. J Appl Microbiol. 2022 Nov 1;133(5):2864-2876 [PMID: 36648151]
  30. PLoS One. 2016 Jun 30;11(6):e0158207 [PMID: 27359330]
  31. Environ Sci Technol. 2016 Apr 19;50(8):4194-202 [PMID: 27001166]
  32. J Biotechnol. 2016 May 10;225:44-5 [PMID: 26995610]
  33. Front Microbiol. 2016 Feb 12;7:150 [PMID: 26904020]
  34. Curr Opin Microbiol. 2022 Oct;69:102169 [PMID: 35763963]
  35. J Exp Bot. 2020 Jun 26;71(13):3878-3901 [PMID: 32157287]
  36. Trends Biotechnol. 2021 Mar;39(3):244-261 [PMID: 32800605]
  37. Microbiol Res. 2018 Mar;208:85-98 [PMID: 29551215]
  38. Microbiome. 2020 May 21;8(1):71 [PMID: 32438915]
  39. Plants (Basel). 2022 Jun 24;11(13): [PMID: 35807630]
  40. Antonie Van Leeuwenhoek. 2020 Feb;113(2):185-195 [PMID: 31535335]
  41. Trends Plant Sci. 2021 Jun;26(6):588-599 [PMID: 33745784]
  42. FEMS Microbiol Ecol. 2017 Feb;93(2): [PMID: 27940644]
  43. Environ Microbiol. 2020 Feb;22(2):564-567 [PMID: 31849163]
  44. Genom Data. 2015 Sep 10;6:159-63 [PMID: 26697361]
  45. Front Microbiol. 2017 Apr 03;8:519 [PMID: 28421041]
  46. PLoS One. 2012;7(10):e48479 [PMID: 23119032]
  47. FEMS Microbiol Ecol. 2019 Jan 1;95(1): [PMID: 30307579]
  48. Mol Biol Rep. 2022 Dec;49(12):12165-12179 [PMID: 36169892]
  49. ISME Commun. 2022 Feb 1;2(1):10 [PMID: 37938685]
  50. ISME J. 2012 Jul;6(7):1378-90 [PMID: 22189496]
  51. Microorganisms. 2021 Mar 24;9(4): [PMID: 33805166]
  52. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5 [PMID: 27140646]
  53. Cell. 2017 May 4;169(4):587-596 [PMID: 28475891]
  54. Nature. 2020 Nov;587(7832):103-108 [PMID: 32999461]
  55. Microbiol Res. 2021 Jul;248:126763 [PMID: 33892241]
  56. Appl Environ Microbiol. 2012 Sep;78(17):6187-93 [PMID: 22752165]
  57. ISME J. 2013 Dec;7(12):2248-58 [PMID: 23864127]
  58. Crit Rev Biotechnol. 2015 Mar;35(1):62-74 [PMID: 23984800]
  59. Plant Cell Environ. 2022 Oct;45(10):2875-2897 [PMID: 35864739]
  60. PLoS Biol. 2016 Feb 12;14(2):e1002378 [PMID: 26871440]
  61. Environ Sci Pollut Res Int. 2022 Jun;29(28):42539-42559 [PMID: 35378646]
  62. Front Microbiol. 2020 Apr 08;11:571 [PMID: 32322245]
  63. Microbiome. 2020 Mar 3;8(1):27 [PMID: 32127034]
  64. Front Plant Sci. 2022 Apr 19;13:839407 [PMID: 35519811]
  65. Plant J. 2021 Jan;105(2):518-541 [PMID: 33332645]
  66. Curr Opin Plant Biol. 2021 Feb;59:101978 [PMID: 33454545]
  67. Front Microbiol. 2020 Jan 22;10:3160 [PMID: 32038589]
  68. Environ Health Perspect. 2008 May;116(5):578-82 [PMID: 18470284]
  69. J Exp Bot. 2022 Jan 13;73(2):463-486 [PMID: 34727189]
  70. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4284-E4293 [PMID: 29666229]
  71. PLoS One. 2017 Oct 20;12(10):e0186939 [PMID: 29053752]
  72. Biochem J. 2019 Sep 24;476(18):2607-2621 [PMID: 31484677]
  73. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  74. Front Plant Sci. 2018 Oct 23;9:1473 [PMID: 30405652]
  75. Science. 2019 May 10;364(6440): [PMID: 31073042]
  76. New Phytol. 2022 Jun;234(6):1951-1959 [PMID: 35118660]
  77. Curr Opin Plant Biol. 2017 Aug;38:155-163 [PMID: 28622659]
  78. Front Microbiol. 2022 Jan 13;12:821546 [PMID: 35095825]
  79. Physiol Plant. 2018 Dec;164(4):442-451 [PMID: 29536550]
  80. Chem Biol. 2012 Jul 27;19(7):792-8 [PMID: 22840767]
  81. Front Microbiol. 2020 Jan 17;10:3044 [PMID: 32010100]
  82. Science. 2020 Apr 17;368(6488):270-274 [PMID: 32299947]
  83. Plant Physiol. 2015 Feb;167(2):545-57 [PMID: 25527715]
  84. Plant Physiol Biochem. 2014 Jul;80:160-7 [PMID: 24769617]
  85. Appl Environ Microbiol. 2012 Nov;78(21):7527-37 [PMID: 22885757]

Word Cloud

Created with Highcharts 10.0.0plantphytomicrobiomestressclimateconditionscomplexdiversityfunctionunderstandingchangeresponseschangesextremeinteractionenvironmentalspeciescangrowthabioticcompositionmicrobialbacterialcommunitiesHoweverholisticenhancetoleranceimportantstudiedextraordinaryglobalincreasedepisodesresultcontinuousvariableslifeExploringnaturalprovidecrucialresourcebeneficialmicrobesimproveproductivitynutrientuptakesecondarymetaboliteproductionresistancepathogenicitystressesstronglydependplant'sgenotypeclimaticCurrentlystudiesfocusedelucidatingcommunityabundancecoveringleastknowninteractreviewidentifiesseveralgapsessentialquestionsmicrobiomeUtilizingeco-friendlyapproachesnaturallyoccurringsyntheticleavefewercarbon-footprintsemphasizedmechanismsinvolvedsignalingspatialtemporalextremelyFurthermorefungalbiomeextensivelyinteractomearchaeavirusesoomycetesprotozoaalgaenematodesseldominter-kingdompotentialroleimprovingplantsconsiderablyadditionmuchremainsunderstoodacrossorganismalecosystem-leveldynamicphytomicrobiome:solvingenvironmentmetagenome

Similar Articles

Cited By