CD8+ cells and small viral reservoirs facilitate post-ART control of SIV replication in M3+ Mauritian cynomolgus macaques initiated on ART two weeks post-infection.

Olivia E Harwood, Lea M Matschke, Ryan V Moriarty, Alexis J Balgeman, Abigail J Weaver, Amy L Ellis-Connell, Andrea M Weiler, Lee C Winchester, Courtney V Fletcher, Thomas C Friedrich, Brandon F Keele, David H O'Connor, Jessica D Lang, Matthew R Reynolds, Shelby L O'Connor
Author Information
  1. Olivia E Harwood: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America. ORCID
  2. Lea M Matschke: Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  3. Ryan V Moriarty: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  4. Alexis J Balgeman: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  5. Abigail J Weaver: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  6. Amy L Ellis-Connell: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  7. Andrea M Weiler: Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America.
  8. Lee C Winchester: College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.
  9. Courtney V Fletcher: College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America.
  10. Thomas C Friedrich: Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  11. Brandon F Keele: AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.
  12. David H O'Connor: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  13. Jessica D Lang: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  14. Matthew R Reynolds: Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  15. Shelby L O'Connor: Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America. ORCID

Abstract

Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). None of the MCMs possessed MHC haplotypes previously associated with SIV control. For six months after ART withdrawal, we observed undetectable or transient viremia in seven of the eight MCMs, despite detecting replication competent SIV using quantitative viral outgrowth assays. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the observed PTC was mediated, at least in part, by CD8α+ cells. With intact proviral DNA assays, we found that MCMs had significantly smaller viral reservoirs two wpi than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. We found a similarly small viral reservoir among six additional SIV+ MCMs in which ART was initiated at eight wpi, some of whom exhibited viral rebound. These results suggest that an unusually small viral reservoir is a hallmark among SIV+ MCMs. By evaluating immunological differences between MCMs that did and did not rebound, we identified that PTC was associated with a reduced frequency of CD4+ and CD8+ lymphocyte subsets expressing exhaustion markers. Together, these results suggest a combination of small reservoirs and immune-mediated virus suppression contribute to PTC in MCMs. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.

References

  1. J Acquir Immune Defic Syndr. 2016 Sep 1;73(1):e8-e10 [PMID: 27285451]
  2. Nat Biotechnol. 2020 Mar;38(3):276-278 [PMID: 32055031]
  3. J Clin Invest. 2021 Jun 1;131(11): [PMID: 34060478]
  4. Proc Natl Acad Sci U S A. 2022 Feb 8;119(6): [PMID: 35110411]
  5. PLoS Pathog. 2013 Mar;9(3):e1003211 [PMID: 23516360]
  6. Nature. 2019 Feb;566(7742):120-125 [PMID: 30700913]
  7. J Immunol. 2018 Jan 1;200(1):49-60 [PMID: 29150562]
  8. J Clin Invest. 2021 Mar 15;131(6): [PMID: 33465055]
  9. PLoS Pathog. 2011 Aug;7(8):e1002170 [PMID: 21829366]
  10. Elife. 2019 Oct 25;8: [PMID: 31650954]
  11. Immunol Rev. 2019 Nov;292(1):149-163 [PMID: 31883174]
  12. J Exp Med. 2018 Sep 3;215(9):2311-2324 [PMID: 30072495]
  13. Sci Transl Med. 2015 Sep 16;7(305):305ra144 [PMID: 26378244]
  14. Cell Host Microbe. 2019 Jul 10;26(1):73-85.e4 [PMID: 31295427]
  15. J Clin Invest. 2018 Aug 31;128(9):4074-4085 [PMID: 30024859]
  16. AIDS. 2022 Jun 1;36(7):985-990 [PMID: 35184069]
  17. Lancet Microbe. 2021 May;2(5):e198-e209 [PMID: 35544209]
  18. Nat Med. 2016 Sep;22(9):1043-9 [PMID: 27500724]
  19. J Virol. 2005 Jul;79(14):8878-85 [PMID: 15994781]
  20. Bioinformatics. 2010 Feb 15;26(4):493-500 [PMID: 20022975]
  21. Clin Pharmacokinet. 2013 Nov;52(11):981-94 [PMID: 23824675]
  22. Nat Commun. 2022 Sep 6;13(1):5236 [PMID: 36068229]
  23. Am J Pathol. 1999 Jun;154(6):1923-32 [PMID: 10362819]
  24. PLoS Pathog. 2017 May 4;13(5):e1006359 [PMID: 28472156]
  25. Arch Intern Med. 2012 Sep 10;172(16):1252-5 [PMID: 22826124]
  26. Nature. 2016 Jul 28;535(7613):556-60 [PMID: 27338952]
  27. Immunity. 2016 Sep 20;45(3):656-668 [PMID: 27653601]
  28. Genome Res. 2023 Mar;33(3):448-462 [PMID: 36854669]
  29. Open Forum Infect Dis. 2015 Aug 26;2(4):ofv123 [PMID: 26478893]
  30. J Virol. 2015 Oct;89(19):9748-57 [PMID: 26178985]
  31. Methods Mol Biol. 2016;1354:239-53 [PMID: 26714716]
  32. J Infect Dis. 2018 Nov 5;218(12):1954-1963 [PMID: 30085241]
  33. PLoS Pathog. 2020 Oct 26;16(10):e1008954 [PMID: 33104758]
  34. Cell Host Microbe. 2022 Sep 14;30(9):1207-1218.e7 [PMID: 35981532]
  35. Nature. 2014 Jul 31;511(7511):601-5 [PMID: 25043006]
  36. Immunity. 2019 Oct 15;51(4):724-734.e4 [PMID: 31586542]
  37. Nat Rev Immunol. 2009 Oct;9(10):717-28 [PMID: 19859066]
  38. Clin Infect Dis. 2015 Jun 1;60 Suppl 3:S165-9 [PMID: 25972498]
  39. Sci Rep. 2021 Apr 23;11(1):8810 [PMID: 33893359]
  40. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5467-72 [PMID: 25870266]
  41. Nat Med. 2020 Apr;26(4):519-528 [PMID: 32284611]
  42. J Virol. 2020 Jul 1;94(14): [PMID: 32350073]
  43. J Virol. 2012 Jul;86(14):7596-604 [PMID: 22573864]
  44. Nature. 2014 Aug 7;512(7512):74-7 [PMID: 25042999]
  45. Genome Biol. 2014 Nov 07;15(11):478 [PMID: 25418588]
  46. Immunity. 2021 Oct 12;54(10):2372-2384.e7 [PMID: 34496223]
  47. Infect Immun. 2018 Nov 20;86(12): [PMID: 30224552]
  48. J Virol. 2009 Nov;83(22):11876-89 [PMID: 19726501]
  49. Nat Commun. 2018 Dec 21;9(1):5429 [PMID: 30575753]
  50. PLoS Pathog. 2020 Sep 17;16(9):e1008821 [PMID: 32941545]
  51. Immunogenetics. 2009 May;61(5):327-39 [PMID: 19337730]
  52. Curr Opin HIV AIDS. 2022 Sep 1;17(5):315-324 [PMID: 35777930]
  53. PLoS One. 2020 Mar 4;15(3):e0228163 [PMID: 32130229]
  54. Bioinformatics. 2013 Apr 15;29(8):1035-43 [PMID: 23428641]
  55. J Med Primatol. 1998 Apr-Jun;27(2-3):94-8 [PMID: 9747949]
  56. Sci Transl Med. 2010 Mar 10;2(22):22ra18 [PMID: 20375000]
  57. Eur J Immunol. 2005 Nov;35(11):3240-7 [PMID: 16224817]
  58. Science. 1999 Feb 5;283(5403):857-60 [PMID: 9933172]
  59. Sci Transl Med. 2019 Dec 18;11(523): [PMID: 31852798]
  60. AIDS. 2016 Jan 28;30(3):343-53 [PMID: 26588174]
  61. J Virol. 2019 Jul 17;93(15): [PMID: 31092584]
  62. J Virol. 2022 Oct 26;96(20):e0118522 [PMID: 36190241]
  63. Sci Transl Med. 2017 Feb 15;9(377): [PMID: 28202771]
  64. J Virol. 2019 Feb 5;93(4): [PMID: 30487276]
  65. Nat Med. 2018 Sep;24(9):1430-1440 [PMID: 30082858]
  66. AIDS. 2017 Feb 20;31(4):477-484 [PMID: 28060012]
  67. Front Immunol. 2019 Jul 24;10:1749 [PMID: 31396237]
  68. J Virol. 2007 Aug;81(16):8827-32 [PMID: 17537848]
  69. Nat Biotechnol. 2017 Apr 11;35(4):316-319 [PMID: 28398311]
  70. PLoS Pathog. 2010 May 27;6(5):e1000917 [PMID: 20523897]
  71. Immunity. 2023 Jul 11;56(7):1649-1663.e5 [PMID: 37236188]
  72. Vaccine. 2012 Jun 22;30(30):4465-75 [PMID: 22569124]
  73. J Med Primatol. 2005 Oct;34(5-6):303-12 [PMID: 16128925]
  74. J Virol. 2007 Apr;81(7):3465-76 [PMID: 17251286]
  75. AIDS Res Hum Retroviruses. 2017 Aug;33(8):843-858 [PMID: 28503929]
  76. Elife. 2014 Sep 12;3:e03821 [PMID: 25217531]
  77. J Virol. 2006 May;80(10):5074-7 [PMID: 16641299]
  78. Nat Microbiol. 2023 Feb;8(2):299-308 [PMID: 36690860]
  79. Nat Commun. 2022 Jan 26;13(1):521 [PMID: 35082297]
  80. Nat Commun. 2015 Oct 09;6:8495 [PMID: 26449164]
  81. J Virol. 2022 Dec 14;96(23):e0142422 [PMID: 36377872]
  82. Immunity. 2023 May 9;56(5):1132-1147.e6 [PMID: 37030290]
  83. Nat Commun. 2021 Mar 5;12(1):1474 [PMID: 33674572]
  84. Clin Infect Dis. 2022 Mar 9;74(5):865-870 [PMID: 34117753]
  85. J Virol. 2016 May 27;90(12):5541-5548 [PMID: 26962218]
  86. PLoS Pathog. 2014 Dec 11;10(12):e1004543 [PMID: 25503054]

Grants

  1. P51 RR000167/NCRR NIH HHS
  2. 75N91019D00024/NCI NIH HHS
  3. 75N99020D00005/ORFDO NIH HHS
  4. HHSN261201500003I/NCI NIH HHS
  5. P51 OD011106/NIH HHS
  6. 75N93023D00005/NIAID NIH HHS
  7. R01 AI108415/NIAID NIH HHS
  8. 75N92020D00005/NHLBI NIH HHS
  9. 75N93022D00005/NIAID NIH HHS
  10. HHSN261201500003C/NCI NIH HHS
  11. P40 OD028116/NIH HHS
  12. R01 AI124965/NIAID NIH HHS
  13. 75N95020D00005/NIDA NIH HHS
  14. T32 AI055397/NIAID NIH HHS

MeSH Term

Humans
Animals
Simian Acquired Immunodeficiency Syndrome
Simian Immunodeficiency Virus
Macaca mulatta
CD8-Positive T-Lymphocytes
HIV Infections
Macaca fascicularis
Viral Load
Virus Replication
Anti-Retroviral Agents

Chemicals

Anti-Retroviral Agents

Word Cloud

Created with Highcharts 10.0.0MCMsPTCviralARTsmallHIVcontrolobservedmacaquesinitiatedtwowpiSIVcellsreboundreservoirsremissionwithdrawalcohortMauritiancynomolgusweekspost-infectionassociatedsixeightreplicationassaysCD8α+foundreservoiramongSIV+resultssuggestCD8+Sustainableantiretroviraltherapypost-treatmentremainstopprioritytreatmentsurprisingMHC-haplomatchedMHC-M3+SIVmac239+NonepossessedMHChaplotypespreviouslymonthsundetectabletransientviremiasevendespitedetectingcompetentusingquantitativeoutgrowthvivodepletioninducedanimalsindicatingmediatedleastpartintactproviralDNAsignificantlysmalleridenticallyinfectedrhesuspopulationrarelydevelopssimilarlyadditionalexhibitedunusuallyhallmarkevaluatingimmunologicaldifferencesidentifiedreducedfrequencyCD4+lymphocytesubsetsexpressingexhaustionmarkersTogethercombinationimmune-mediatedvirussuppressioncontributedefiningimmunologicmechanismsengendermodelmayidentifytherapeutictargetsinducingdurablehumansfacilitatepost-ARTM3+

Similar Articles

Cited By