Acknowledging more biodiversity without more species.

Christophe Dufresnes, Nikolay Poyarkov, Daniel Jablonski
Author Information
  1. Christophe Dufresnes: Laboratory of Amphibian Systematics and Evolutionary Research, College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China. ORCID
  2. Nikolay Poyarkov: Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi 122000, Vietnam. ORCID
  3. Daniel Jablonski: Department of Zoology, Comenius University in Bratislava, Bratislava 84215, Slovakia. ORCID

Abstract

Delimiting and naming biodiversity is a vital step toward wildlife conservation and research. However, species delimitation must be consistent across biota so that the limited resources available for nature protection can be spent effectively and objectively. To date, newly discovered lineages typically are either left undescribed and thus remain unprotected or are being erroneously proposed as new species despite mixed evidence for completed speciation, in turn contributing to the emerging problem of taxonomic inflation. Inspired by recent conceptual and methodological progress, we propose a standardized workflow for species delimitation that combines phylogenetic and hybrid zone analyses of genomic datasets ("genomic taxonomy"), in which phylogeographic lineages that do not freely admix are ranked as species, while those that have remained fully genetically compatible are ranked as subspecies. In both cases, we encourage their formal taxonomic naming, diagnosis, and description to promote social awareness toward biodiversity. The use of loci throughout the genome overcomes the unreliability of widely used barcoding genes when phylogeographic patterns are complex, while the evaluation of divergence and reproductive isolation unifies the long-opposed concepts of lineage species and biological species. We suggest that a shift in conservation assessments from a single level (species) toward a two-level hierarchy (species and subspecies) will lead to a more balanced perception of biodiversity in which both intraspecific and interspecific diversity are valued and more adequately protected.

Keywords

References

  1. Integr Zool. 2021 May;16(3):420-428 [PMID: 32978888]
  2. Zootaxa. 2021 Aug 31;5027(2):151-159 [PMID: 34811237]
  3. Stud Hist Philos Biol Biomed Sci. 2013 Sep;44(3):262-71 [PMID: 23684745]
  4. Bioscience. 2021 May 26;71(9):964-976 [PMID: 34475806]
  5. Conserv Biol. 2006 Dec;20(6):1584-94 [PMID: 17181793]
  6. Philos Trans R Soc Lond B Biol Sci. 2022 Aug;377(1856):20210202 [PMID: 35694748]
  7. Proc Natl Acad Sci U S A. 2004 Oct 19;101(42):15261-4 [PMID: 15477597]
  8. PLoS Biol. 2011 Aug;9(8):e1001127 [PMID: 21886479]
  9. BMC Ecol Evol. 2022 Sep 14;22(1):108 [PMID: 36104671]
  10. PLoS One. 2013 Jul 12;8(7):e68242 [PMID: 23874561]
  11. Mol Biol Evol. 2015 Apr;32(4):835-45 [PMID: 25739733]
  12. Conserv Biol. 2016 Apr;30(2):434-7 [PMID: 26954433]
  13. Ecol Evol. 2020 Oct 06;10(21):12115-12128 [PMID: 33209274]
  14. Mol Ecol. 2018 Dec;27(24):5195-5213 [PMID: 30403418]
  15. Proc Natl Acad Sci U S A. 2009 May 19;106(20):8267-72 [PMID: 19416818]
  16. Heredity (Edinb). 2023 Jul;131(1):15-24 [PMID: 37106116]
  17. Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1607-1612 [PMID: 28137871]
  18. Ecol Evol. 2022 Jul 10;12(7):e9069 [PMID: 35845367]
  19. PLoS Comput Biol. 2021 May 13;17(5):e1008924 [PMID: 33983918]
  20. Mol Phylogenet Evol. 2023 Jun;183:107783 [PMID: 37044190]
  21. Evolution. 2021 Jun;75(6):1256-1273 [PMID: 33754340]
  22. Genome Res. 2013 Nov;23(11):1817-28 [PMID: 24045163]
  23. Sci Adv. 2021 Jan 22;7(4): [PMID: 33523945]
  24. Am Nat. 2020 Jul;196(1):9-28 [PMID: 32552108]
  25. Mol Phylogenet Evol. 2009 Oct;53(1):320-8 [PMID: 19501178]
  26. Syst Biol. 2023 Jun 16;72(2):357-371 [PMID: 35993885]
  27. Proc Natl Acad Sci U S A. 2021 Sep 7;118(36): [PMID: 34465621]
  28. Sci Rep. 2020 Mar 26;10(1):5502 [PMID: 32218506]
  29. PLoS Biol. 2004 Dec;2(12):e442 [PMID: 15583716]
  30. Zookeys. 2019 Jul 02;859:131-158 [PMID: 31327926]
  31. Mol Phylogenet Evol. 2023 Mar;180:107674 [PMID: 36543275]
  32. Nature. 2017 May 31;546(7656):25-27 [PMID: 28569833]
  33. Nat Commun. 2023 Mar 13;14(1):1389 [PMID: 36914628]
  34. PLoS Biol. 2018 Mar 14;16(3):e2005075 [PMID: 29538381]
  35. Q Rev Biol. 2004 Jun;79(2):161-79 [PMID: 15232950]
  36. PLoS One. 2020 Feb 13;15(2):e0217956 [PMID: 32053589]
  37. Mol Ecol. 2001 Dec;10(12):2741-52 [PMID: 11903888]
  38. Mol Phylogenet Evol. 2014 Jul;76:134-43 [PMID: 24662681]
  39. Trends Ecol Evol. 2020 Dec;35(12):1119-1128 [PMID: 32977981]
  40. Front Zool. 2010 May 25;7:16 [PMID: 20500846]
  41. Evolution. 2017 Sep;71(9):2140-2158 [PMID: 28703292]
  42. Nature. 2017 Jun 28;546(7660):600 [PMID: 28658242]
  43. Syst Biol. 2020 Jul 1;69(4):708-721 [PMID: 31688934]
  44. Mol Ecol. 2004 Jan;13(1):21-31 [PMID: 14653785]
  45. Mol Ecol. 2006 May;15(6):1419-39 [PMID: 16629801]
  46. Trends Ecol Evol. 2004 Sep;19(9):464-9 [PMID: 16701308]
  47. Nature. 2017 Aug 9;548(7666):158 [PMID: 28796215]
  48. Sci Rep. 2023 Jan 27;13(1):1523 [PMID: 36707640]
  49. Science. 2022 Sep 16;377(6612):1272 [PMID: 36108017]
  50. Mol Ecol. 2012 Aug;21(16):3907-30 [PMID: 22738314]
  51. Heredity (Edinb). 2020 Mar;124(3):423-438 [PMID: 31959977]
  52. Syst Biol. 2007 Dec;56(6):879-86 [PMID: 18027281]
  53. Proc Biol Sci. 2006 May 7;273(1590):1049-53 [PMID: 16600880]
  54. Trends Ecol Evol. 1994 Oct;9(10):373-5 [PMID: 21236896]
  55. Proc Biol Sci. 2013 Oct 09;280(1772):20132246 [PMID: 24107536]
  56. Zootaxa. 2023 Apr 11;5263(4):566-574 [PMID: 37044968]
  57. Zootaxa. 2015 Jan 20;3911(3):443-6 [PMID: 25661624]
  58. BMC Genomics. 2013 Dec 23;14:913 [PMID: 24365132]
  59. Science. 2022 Dec 16;378(6625):1214-1218 [PMID: 36520892]
  60. Trends Ecol Evol. 2009 Jul;24(7):394-9 [PMID: 19409647]
  61. Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12764-9 [PMID: 26385966]
  62. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11704-9 [PMID: 21709253]
  63. PLoS Biol. 2016 Dec 27;14(12):e2000234 [PMID: 28027292]
  64. Mol Ecol Resour. 2021 Feb;21(2):609-620 [PMID: 33058550]
  65. Mol Ecol. 2022 Jan;31(2):411-418 [PMID: 34626519]
  66. Sci Adv. 2015 Jun 26;1(5):e1400175 [PMID: 26601191]
  67. Science. 1991 Mar 8;251(4998):1187-8 [PMID: 17799277]
  68. Syst Biol. 2017 Jul 1;66(4):644-656 [PMID: 27798406]
  69. Nature. 2013 Feb 7;494(7435):35 [PMID: 23389532]
  70. Mol Ecol. 2022 Aug;31(16):4208-4223 [PMID: 35748392]
  71. Zootaxa. 2018 Jan 24;4375(2):257-264 [PMID: 29689772]
  72. Mol Phylogenet Evol. 2019 Apr;133:128-140 [PMID: 30584918]

MeSH Term

Animals
Phylogeny
Biodiversity
Biota
Animals, Wild
Genomics

Word Cloud

Created with Highcharts 10.0.0speciesbiodiversitytowardconservationnamingdelimitationlineagestaxonomichybridphylogeographicrankedsubspeciesDelimitingvitalstepwildliferesearchHowevermustconsistentacrossbiotalimitedresourcesavailablenatureprotectioncanspenteffectivelyobjectivelydatenewlydiscoveredtypicallyeitherleftundescribedthusremainunprotectederroneouslyproposednewdespitemixedevidencecompletedspeciationturncontributingemergingprobleminflationInspiredrecentconceptualmethodologicalprogressproposestandardizedworkflowcombinesphylogeneticzoneanalysesgenomicdatasets"genomictaxonomy"freelyadmixremainedfullygeneticallycompatiblecasesencourageformaldiagnosisdescriptionpromotesocialawarenessuselocithroughoutgenomeovercomesunreliabilitywidelyusedbarcodinggenespatternscomplexevaluationdivergencereproductiveisolationunifieslong-opposedconceptslineagebiologicalsuggestshiftassessmentssingleleveltwo-levelhierarchywillleadbalancedperceptionintraspecificinterspecificdiversityvaluedadequatelyprotectedAcknowledgingwithoutgenomicszones

Similar Articles

Cited By (13)