A robust, agnostic molecular biosignature based on machine learning.

H James Cleaves, Grethe Hystad, Anirudh Prabhu, Michael L Wong, George D Cody, Sophia Economon, Robert M Hazen
Author Information
  1. H James Cleaves: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
  2. Grethe Hystad: Department of Mathematics and Statistics, Purdue University Northwest, Hammond, IN 46323. ORCID
  3. Anirudh Prabhu: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
  4. Michael L Wong: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
  5. George D Cody: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
  6. Sophia Economon: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218.
  7. Robert M Hazen: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID

Abstract

The search for definitive biosignatures-unambiguous markers of past or present life-is a central goal of paleobiology and astrobiology. We used pyrolysis-gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method's utility for detecting alien biology.

Keywords

References

  1. Nature. 2001 Mar 1;410(6824):77-81 [PMID: 11242044]
  2. PLoS Biol. 2004 Sep;2(9):E302 [PMID: 15367939]
  3. Adv Carbohydr Chem. 1959;14:63-134 [PMID: 13820038]
  4. Chem Sci. 2022 Mar 23;13(17):4838-4853 [PMID: 35655880]
  5. Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109): [PMID: 29133442]
  6. Astrobiology. 2022 Feb;22(2):143-157 [PMID: 35021862]
  7. Astrobiology. 2018 Jul;18(7):915-922 [PMID: 29634318]
  8. Nat Cell Biol. 1999 May;1(1):E13-5 [PMID: 10559875]
  9. Astrobiology. 2012 Jan;12(1):29-39 [PMID: 22204400]
  10. Anal Chem. 2012 Apr 3;84(7):3287-95 [PMID: 22414024]
  11. Nat Commun. 2021 May 24;12(1):3033 [PMID: 34031398]
  12. Nature. 2004 Dec 16;432(7019):824-8 [PMID: 15602547]
  13. Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2307149120 [PMID: 37748080]
  14. Life (Basel). 2021 Mar 12;11(3): [PMID: 33809046]
  15. J R Soc Interface. 2023 Feb;20(199):20220810 [PMID: 36751931]
  16. Astrobiology. 2023 Jan;23(1):60-75 [PMID: 36454287]
  17. Appl Microbiol. 1970 Oct;20(4):567-72 [PMID: 16349890]
  18. Nature. 1965 Aug 7;207(997):568-70 [PMID: 5883628]
  19. Nature. 1961 Jul 8;191:144-8 [PMID: 13771349]
  20. Astrobiology. 2017 Oct;17(10):1022-1052 [PMID: 28443722]
  21. Astrobiology. 2014 Jun;14(6):541-9 [PMID: 24735484]
  22. Science. 2015 Jan 23;347(6220):415-7 [PMID: 25515120]
  23. Entropy (Basel). 2022 Sep 28;24(10): [PMID: 37420403]
  24. Astrobiology. 2018 Jun;18(6):779-824 [PMID: 29938538]
  25. Bull Math Biophys. 1969 Mar;31(1):159-98 [PMID: 5779774]
  26. J Geophys Res. 1999 Nov 25;104(E11):26977-95 [PMID: 11543200]
  27. J Mol Evol. 2011 Mar;72(3):283-95 [PMID: 21253717]
  28. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10310-3 [PMID: 17548829]
  29. Bioinformatics. 2012 Sep 1;28(17):2270-1 [PMID: 22796955]
  30. Annu Rev Earth Planet Sci. 1999;27:313-58 [PMID: 11543060]
  31. Astrobiology. 2017 Sep;17(9):902-912 [PMID: 28915087]
  32. Astrobiology. 2017 Mar;17(3):216-230 [PMID: 28323483]
  33. Astrobiology. 2022 Sep;22(9):1099-1115 [PMID: 35749703]
  34. Nature. 1970 Dec 5;228(5275):923-6 [PMID: 5482102]
  35. Science. 2000 Aug 4;289(5480):756-9 [PMID: 10926533]
  36. Astrobiology. 2019 Sep;19(9):1075-1102 [PMID: 31335163]
  37. J Am Soc Mass Spectrom. 2023 Aug 2;34(8):1584-1592 [PMID: 37390315]
  38. Astrobiology. 2021 Jul;21(7):866-892 [PMID: 34042490]
  39. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2763-8 [PMID: 20160129]
  40. Astrobiology. 2018 Jun;18(6):663-708 [PMID: 29727196]

MeSH Term

Humans
Carbon
Emigrants and Immigrants
Exobiology
Fossils
Machine Learning

Chemicals

Carbon

Word Cloud

Created with Highcharts 10.0.0organicmasssamplesgeologicallyprocessedmeteoritesmachine-learningmethodsmachinelearningsearchdefinitivebiosignatures-unambiguousmarkerspastpresentlife-iscentralgoalpaleobiologyastrobiologyusedpyrolysis-gaschromatographycoupledspectrometryanalyzechemicallydisparateincludinglivingcellsfossilmaterialcarbon-richlaboratory-synthesizedcompoundsmixturesDatasampleemployedtrainingtestsubsetsresultedmodelcanidentifybiogenicitycontemporaryancient~90%accuracyrelyprecisecompoundidentification:Ratherrelationalaspectschromatographicpeaksprovideneededinformationunderscoresmethod'sutilitydetectingalienbiologyrobustagnosticmolecularbiosignaturebasedbiosignaturescarbonaceouschemistrytaphonomy

Similar Articles

Cited By