A robust, agnostic molecular biosignature based on machine learning.
H James Cleaves, Grethe Hystad, Anirudh Prabhu, Michael L Wong, George D Cody, Sophia Economon, Robert M Hazen
Author Information
H James Cleaves: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
Grethe Hystad: Department of Mathematics and Statistics, Purdue University Northwest, Hammond, IN 46323. ORCID
Anirudh Prabhu: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
Michael L Wong: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
George D Cody: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
Sophia Economon: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218.
Robert M Hazen: Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015. ORCID
中文译文
English
The search for definitive biosignatures-unambiguous markers of past or present life-is a central goal of paleobiology and astrobiology. We used pyrolysis-gas chromatography coupled to mass spectrometry to analyze chemically disparate samples, including living cells, geologically processed fossil organic material, carbon-rich meteorites, and laboratory-synthesized organic compounds and mixtures. Data from each sample were employed as training and test subsets for machine-learning methods, which resulted in a model that can identify the biogenicity of both contemporary and ancient geologically processed samples with ~90% accuracy. These machine-learning methods do not rely on precise compound identification: Rather, the relational aspects of chromatographic and mass peaks provide the needed information, which underscores this method's utility for detecting alien biology.
Nature. 2001 Mar 1;410(6824):77-81
[PMID: 11242044 ]
PLoS Biol. 2004 Sep;2(9):E302
[PMID: 15367939 ]
Adv Carbohydr Chem. 1959;14:63-134
[PMID: 13820038 ]
Chem Sci. 2022 Mar 23;13(17):4838-4853
[PMID: 35655880 ]
Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109):
[PMID: 29133442 ]
Astrobiology. 2022 Feb;22(2):143-157
[PMID: 35021862 ]
Astrobiology. 2018 Jul;18(7):915-922
[PMID: 29634318 ]
Nat Cell Biol. 1999 May;1(1):E13-5
[PMID: 10559875 ]
Astrobiology. 2012 Jan;12(1):29-39
[PMID: 22204400 ]
Anal Chem. 2012 Apr 3;84(7):3287-95
[PMID: 22414024 ]
Nat Commun. 2021 May 24;12(1):3033
[PMID: 34031398 ]
Nature. 2004 Dec 16;432(7019):824-8
[PMID: 15602547 ]
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2307149120
[PMID: 37748080 ]
Life (Basel). 2021 Mar 12;11(3):
[PMID: 33809046 ]
J R Soc Interface. 2023 Feb;20(199):20220810
[PMID: 36751931 ]
Astrobiology. 2023 Jan;23(1):60-75
[PMID: 36454287 ]
Appl Microbiol. 1970 Oct;20(4):567-72
[PMID: 16349890 ]
Nature. 1965 Aug 7;207(997):568-70
[PMID: 5883628 ]
Nature. 1961 Jul 8;191:144-8
[PMID: 13771349 ]
Astrobiology. 2017 Oct;17(10):1022-1052
[PMID: 28443722 ]
Astrobiology. 2014 Jun;14(6):541-9
[PMID: 24735484 ]
Science. 2015 Jan 23;347(6220):415-7
[PMID: 25515120 ]
Entropy (Basel). 2022 Sep 28;24(10):
[PMID: 37420403 ]
Astrobiology. 2018 Jun;18(6):779-824
[PMID: 29938538 ]
Bull Math Biophys. 1969 Mar;31(1):159-98
[PMID: 5779774 ]
J Geophys Res. 1999 Nov 25;104(E11):26977-95
[PMID: 11543200 ]
J Mol Evol. 2011 Mar;72(3):283-95
[PMID: 21253717 ]
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10310-3
[PMID: 17548829 ]
Bioinformatics. 2012 Sep 1;28(17):2270-1
[PMID: 22796955 ]
Annu Rev Earth Planet Sci. 1999;27:313-58
[PMID: 11543060 ]
Astrobiology. 2017 Sep;17(9):902-912
[PMID: 28915087 ]
Astrobiology. 2017 Mar;17(3):216-230
[PMID: 28323483 ]
Astrobiology. 2022 Sep;22(9):1099-1115
[PMID: 35749703 ]
Nature. 1970 Dec 5;228(5275):923-6
[PMID: 5482102 ]
Science. 2000 Aug 4;289(5480):756-9
[PMID: 10926533 ]
Astrobiology. 2019 Sep;19(9):1075-1102
[PMID: 31335163 ]
J Am Soc Mass Spectrom. 2023 Aug 2;34(8):1584-1592
[PMID: 37390315 ]
Astrobiology. 2021 Jul;21(7):866-892
[PMID: 34042490 ]
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2763-8
[PMID: 20160129 ]
Astrobiology. 2018 Jun;18(6):663-708
[PMID: 29727196 ]
Humans
Carbon
Emigrants and Immigrants
Exobiology
Fossils
Machine Learning