Role of Domain-Domain Interactions on the Self-Association and Physical Stability of Monoclonal Antibodies: Effect of pH and Salt.

Amy Y Xu, Marco A Blanco, Maria Monica Castellanos, Curtis W Meuse, Kevin Mattison, Ioannis Karageorgos, Harold W Hatch, Vincent K Shen, Joseph E Curtis
Author Information
  1. Amy Y Xu: Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States. ORCID
  2. Marco A Blanco: Discovery Pharmaceutical Sciences, Merck Research Laboratories, Merck & Co., Inc, West Point, Pennsylvania 19486, United States.
  3. Maria Monica Castellanos: Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States. ORCID
  4. Curtis W Meuse: Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States. ORCID
  5. Kevin Mattison: Malvern Panalytical, Westborough, Massachusetts 01581, United States.
  6. Ioannis Karageorgos: Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States.
  7. Harold W Hatch: Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States. ORCID
  8. Vincent K Shen: Chemical Sciences Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
  9. Joseph E Curtis: NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States. ORCID

Abstract

Monoclonal antibodies (mAbs) make up a major class of biotherapeutics with a wide range of clinical applications. Their physical stability can be affected by various environmental factors. For instance, an acidic pH can be encountered during different stages of the mAb manufacturing process, including purification and storage. Therefore, understanding the behavior of flexible mAb molecules in acidic solution environments will benefit the development of stable mAb products. This study used small-angle X-ray scattering (SAXS) and complementary biophysical characterization techniques to investigate the conformational flexibility and protein-protein interactions (PPI) of a model mAb molecule under near-neutral and acidic conditions. The study also characterized the interactions between Fab and Fc fragments under the same buffer conditions to identify domain-domain interactions. The results suggest that solution pH significantly influences mAb flexibility and thus could help mAbs remain physically stable by maximizing local electrostatic repulsions when mAbs become crowded in solution. Under acidic buffer conditions, both Fab and Fc contribute to the repulsive PPI observed among the full mAb at a low ionic strength. However, as ionic strength increases, hydrophobic interactions lead to the self-association of Fc fragments and, subsequently, could affect the aggregation state of the mAb.

References

  1. Anal Bioanal Chem. 2018 Mar;410(8):2141-2159 [PMID: 29423600]
  2. Front Bioeng Biotechnol. 2022 Feb 09;10:832059 [PMID: 35223794]
  3. Mol Pharm. 2019 Jun 3;16(6):2394-2404 [PMID: 31059276]
  4. J Appl Crystallogr. 2017 Sep 05;50(Pt 5):1545-1553 [PMID: 29021737]
  5. Mol Pharm. 2023 Jun 5;20(6):2991-3008 [PMID: 37191356]
  6. J Phys Chem B. 2013 Nov 14;117(45):14029-38 [PMID: 24171386]
  7. Mol Pharm. 2021 Apr 5;18(4):1656-1665 [PMID: 33656340]
  8. J Pharm Sci. 2019 May;108(5):1663-1674 [PMID: 30593783]
  9. Anal Bioanal Chem. 2018 Mar;410(8):2079-2093 [PMID: 29423598]
  10. Mol Pharm. 2020 Nov 2;17(11):4323-4333 [PMID: 32965126]
  11. MAbs. 2014;6(5):1163-77 [PMID: 25517302]
  12. MAbs. 2021 Jan-Dec;13(1):1905978 [PMID: 33843452]
  13. J Phys Chem B. 2014 Aug 28;118(34):10111-9 [PMID: 25117055]
  14. PLoS One. 2019 May 9;14(5):e0215442 [PMID: 31071101]
  15. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  16. Data Brief. 2015 Nov 30;6:47-52 [PMID: 26793756]
  17. Antibodies (Basel). 2022 Mar 31;11(2): [PMID: 35466277]
  18. Protein Sci. 2013 Nov;22(11):1542-51 [PMID: 23963869]
  19. Antibodies (Basel). 2017;6(4): [PMID: 30364605]
  20. Drug Dev Res. 2020 May;81(3):329-337 [PMID: 31758731]
  21. Langmuir. 2013 Apr 9;29(14):4584-93 [PMID: 23458495]
  22. Pharm Res. 2016 Mar;33(3):716-28 [PMID: 26563206]
  23. Trends Biotechnol. 2014 Jul;32(7):372-80 [PMID: 24908382]
  24. Biophys J. 2000 Jan;78(1):394-404 [PMID: 10620303]
  25. Eur J Pharm Biopharm. 2016 Oct;107:310-20 [PMID: 27449627]
  26. Proteins. 2007 Mar 1;66(4):954-62 [PMID: 17154421]
  27. J Phys Chem B. 2014 Nov 6;118(44):12599-611 [PMID: 25302767]
  28. J Phys Chem B. 2016 Dec 15;120(49):12511-12518 [PMID: 27973814]
  29. Biophys J. 2020 Jun 2;118(11):2741-2754 [PMID: 32416079]
  30. Front Immunol. 2023 Feb 24;14:1043109 [PMID: 36911719]
  31. Mol Pharm. 2016 May 2;13(5):1431-44 [PMID: 27017836]
  32. J Phys Chem B. 2014 Jun 5;118(22):5817-31 [PMID: 24810917]
  33. Mol Pharm. 2022 Feb 7;19(2):508-519 [PMID: 34939811]
  34. Immunotherapy. 2019 Feb;11(2):119-127 [PMID: 30730271]
  35. Fold Des. 1998;3(1):R9-23 [PMID: 9502314]
  36. Mol Pharm. 2019 Oct 7;16(10):4319-4338 [PMID: 31487466]
  37. Mol Pharm. 2012 Apr 2;9(4):791-802 [PMID: 22352470]
  38. Mol Pharm. 2020 May 4;17(5):1748-1756 [PMID: 32101441]
  39. J Appl Crystallogr. 2016 Oct 14;49(Pt 6):1861-1875 [PMID: 27980506]
  40. Biotechnol Bioeng. 2014 Aug;111(8):1513-20 [PMID: 25097914]
  41. J Phys Chem B. 2012 Jul 19;116(28):8045-57 [PMID: 22694284]
  42. Curr Protein Pept Sci. 2000 Dec;1(4):349-84 [PMID: 12369905]
  43. Protein Sci. 2011 Mar;20(3):580-7 [PMID: 21432935]
  44. Pharm Res. 2012 Feb;29(2):397-410 [PMID: 21853361]
  45. Curr Protoc Protein Sci. 2012 Nov;Chapter 17:17.14.1-17.14.18 [PMID: 23151743]
  46. Biophys J. 2012 Jul 3;103(1):69-78 [PMID: 22828333]
  47. J Phys Chem B. 2023 Feb 9;127(5):1120-1137 [PMID: 36716270]
  48. J Chem Phys. 2011 Jun 14;134(22):225103 [PMID: 21682538]
  49. J Chem Phys. 2016 Oct 21;145(15):155102 [PMID: 27782465]
  50. Colloids Surf B Biointerfaces. 2006 Jun 1;50(1):1-8 [PMID: 16679008]
  51. J Pharm Sci. 2011 Jul;100(7):2551-62 [PMID: 21294130]
  52. J Liq Chromatogr Relat Technol. 2012 Nov;35(20):2923-2950 [PMID: 23378719]
  53. Adv Drug Deliv Rev. 2011 Oct;63(13):1118-59 [PMID: 21855584]

MeSH Term

Antibodies, Monoclonal
Scattering, Small Angle
Immunoglobulin G
X-Ray Diffraction
Sodium Chloride
Acids
Immunoglobulin Fc Fragments
Hydrogen-Ion Concentration

Chemicals

Antibodies, Monoclonal
Immunoglobulin G
Sodium Chloride
Acids
Immunoglobulin Fc Fragments

Word Cloud

Created with Highcharts 10.0.0mAbacidicinteractionsmAbspHsolutionconditionsFcMonoclonalcanstablestudyflexibilityPPIFabfragmentsbufferionicstrengthantibodiesmakemajorclassbiotherapeuticswiderangeclinicalapplicationsphysicalstabilityaffectedvariousenvironmentalfactorsinstanceencountereddifferentstagesmanufacturingprocessincludingpurificationstorageThereforeunderstandingbehaviorflexiblemoleculesenvironmentswillbenefitdevelopmentproductsusedsmall-angleX-rayscatteringSAXScomplementarybiophysicalcharacterizationtechniquesinvestigateconformationalprotein-proteinmodelmoleculenear-neutralalsocharacterizedidentifydomain-domainresultssuggestsignificantlyinfluencesthushelpremainphysicallymaximizinglocalelectrostaticrepulsionsbecomecrowdedcontributerepulsiveobservedamongfulllowHoweverincreaseshydrophobicleadself-associationsubsequentlyaffectaggregationstateRoleDomain-DomainInteractionsSelf-AssociationPhysicalStabilityAntibodies:EffectSalt

Similar Articles

Cited By