Fixation dynamics on hypergraphs.

Ruodan Liu, Naoki Masuda
Author Information
  1. Ruodan Liu: Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America. ORCID
  2. Naoki Masuda: Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, United States of America. ORCID

Abstract

Hypergraphs have been a useful tool for analyzing population dynamics such as opinion formation and the public goods game occurring in overlapping groups of individuals. In the present study, we propose and analyze evolutionary dynamics on hypergraphs, in which each node takes one of the two types of different but constant fitness values. For the corresponding dynamics on conventional networks, under the birth-death process and uniform initial conditions, most networks are known to be amplifiers of natural selection; amplifiers by definition enhance the difference in the strength of the two competing types in terms of the probability that the mutant type fixates in the population. In contrast, we provide strong computational evidence that a majority of hypergraphs are suppressors of selection under the same conditions by combining theoretical and numerical analyses. We also show that this suppressing effect is not explained by one-mode projection, which is a standard method for expressing hypergraph data as a conventional network. Our results suggest that the modeling framework for structured populations in addition to the specific network structure is an important determinant of evolutionary dynamics, paving a way to studying fixation dynamics on higher-order networks including hypergraphs.

References

  1. PLoS One. 2015 Sep 01;10(9):e0136497 [PMID: 26325289]
  2. PLoS One. 2017 Jul 10;12(7):e0180549 [PMID: 28700698]
  3. Nat Commun. 2021 Jun 29;12(1):4009 [PMID: 34188036]
  4. PLoS Comput Biol. 2024 Mar 15;20(3):e1011905 [PMID: 38489353]
  5. Sci Rep. 2021 Sep 9;11(1):17979 [PMID: 34504152]
  6. PLoS Comput Biol. 2020 Jan 17;16(1):e1007494 [PMID: 31951609]
  7. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8601-4 [PMID: 19433793]
  8. Sci Adv. 2021 Jul 7;7(28): [PMID: 34233880]
  9. Phys Rev Lett. 2006 May 12;96(18):188104 [PMID: 16712402]
  10. J R Soc Interface. 2013 Jan 09;10(80):20120997 [PMID: 23303223]
  11. Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2205424119 [PMID: 36067304]
  12. Nat Hum Behav. 2021 May;5(5):586-595 [PMID: 33398148]
  13. Biosystems. 2012 Feb;107(2):66-80 [PMID: 22020107]
  14. PLoS Comput Biol. 2015 Nov 06;11(11):e1004437 [PMID: 26544962]
  15. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  16. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  17. Proc Biol Sci. 2013 May 15;280(1762):20130211 [PMID: 23677339]
  18. Nature. 2005 Jan 20;433(7023):312-6 [PMID: 15662424]
  19. PLoS One. 2018 Nov 26;13(11):e0200670 [PMID: 30475815]
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041121 [PMID: 18517592]
  21. Nature. 2008 Jul 10;454(7201):213-6 [PMID: 18615084]
  22. PLoS Comput Biol. 2021 Feb 2;17(2):e1008695 [PMID: 33529219]
  23. J Theor Biol. 2009 May 21;258(2):323-34 [PMID: 19490863]
  24. Proc Biol Sci. 2006 Sep 7;273(1598):2249-56 [PMID: 16901846]
  25. Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):E11221-E11230 [PMID: 30413619]
  26. Phys Rev Lett. 2021 Nov 19;127(21):218102 [PMID: 34860074]
  27. J R Soc Interface. 2022 Mar;19(188):20220043 [PMID: 35317647]
  28. Sci Rep. 2012;2:460 [PMID: 22724059]
  29. Nat Phys. 2019 Apr;15(4):313-320 [PMID: 30956684]
  30. Commun Biol. 2018 Jun 14;1:71 [PMID: 30271952]
  31. J R Soc Interface. 2023 Mar;20(200):20220769 [PMID: 36919418]
  32. Commun Biol. 2019 Apr 23;2:137 [PMID: 31044162]
  33. Phys Rev E. 2021 Dec;104(6-1):064305 [PMID: 35030846]
  34. Philos Trans R Soc Lond B Biol Sci. 2010 Jan 12;365(1537):19-30 [PMID: 20008382]
  35. PLoS Comput Biol. 2019 Sep 16;15(9):e1007212 [PMID: 31525178]
  36. Genet Res. 1970 Apr;15(2):221-5 [PMID: 5480754]
  37. Sci Rep. 2017 Dec;7(1):82 [PMID: 28250441]
  38. Commun Biol. 2019 Apr 23;2:138 [PMID: 31044163]

MeSH Term

Computational Biology
Population Dynamics
Computer Simulation
Selection, Genetic
Biological Evolution
Algorithms
Humans
Models, Genetic
Mutation

Word Cloud

Created with Highcharts 10.0.0dynamicshypergraphsnetworkspopulationevolutionarytwotypesconventionalconditionsamplifiersselectionnetworkHypergraphsusefultoolanalyzingopinionformationpublicgoodsgameoccurringoverlappinggroupsindividualspresentstudyproposeanalyzenodetakesonedifferentconstantfitnessvaluescorrespondingbirth-deathprocessuniforminitialknownnaturaldefinitionenhancedifferencestrengthcompetingtermsprobabilitymutanttypefixatescontrastprovidestrongcomputationalevidencemajoritysuppressorscombiningtheoreticalnumericalanalysesalsoshowsuppressingeffectexplainedone-modeprojectionstandardmethodexpressinghypergraphdataresultssuggestmodelingframeworkstructuredpopulationsadditionspecificstructureimportantdeterminantpavingwaystudyingfixationhigher-orderincludingFixation

Similar Articles

Cited By