Mathematical Modeling for the Assessment of Public Policies in the Cancer Health-Care System Implemented for the Colombian Case.

Daniel Rojas-Díaz, María Eugenia Puerta-Yepes, Daniel Medina-Gaspar, Jesús Alonso Botero, Anwar Rodríguez, Norberto Rojas
Author Information
  1. Daniel Rojas-Díaz: Area of Fundamental Sciences, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia. ORCID
  2. María Eugenia Puerta-Yepes: Area of Fundamental Sciences, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia. ORCID
  3. Daniel Medina-Gaspar: School of Finance, Economics, and Government, Universidad EAFIT, Medellin 050022, Colombia. ORCID
  4. Jesús Alonso Botero: School of Finance, Economics, and Government, Universidad EAFIT, Medellin 050022, Colombia.
  5. Anwar Rodríguez: Center for Economic Studies, National Association of Financial Institutions (ANIF), Bogota 110231, Colombia.
  6. Norberto Rojas: Center for Economic Studies, National Association of Financial Institutions (ANIF), Bogota 110231, Colombia.

Abstract

The incidence of cancer has been constantly growing worldwide, placing pressure on health systems and increasing the costs associated with the treatment of cancer. In particular, low- and middle-income countries are expected to face serious challenges related to caring for the majority of the world's new cancer cases in the next 10 years. In this study, we propose a mathematical model that allows for the simulation of different strategies focused on public policies by combining spending and epidemiological indicators. In this way, strategies aimed at efficient spending management with better epidemiological indicators can be determined. For validation and calibration of the model, we use data from Colombia-which, according to the World Bank, is an upper-middle-income country. The results of the simulations using the proposed model, calibrated and validated for Colombia, indicate that the most effective strategy for reducing mortality and financial burden consists of a combination of early detection and greater efficiency of treatment in the early stages of cancer. This approach is found to present a 38% reduction in mortality rate and a 20% reduction in costs (% GDP) when compared to the baseline scenario. Hence, Colombia should prioritize comprehensive care models that focus on patient-centered care, prevention, and early detection.

Keywords

References

  1. Nat Commun. 2022 Jan 11;13(1):208 [PMID: 35017538]
  2. Am J Prev Med. 2016 Mar;50(3):398-401 [PMID: 26547538]
  3. BMJ Glob Health. 2019 Apr 28;4(2):e001311 [PMID: 31139448]
  4. Trends Cancer. 2022 Nov;8(11):962-971 [PMID: 35811230]
  5. SIAM Rev Soc Ind Appl Math. 2011 Jan 1;53(1):3-39 [PMID: 21785515]
  6. Clin Chim Acta. 2005 Jul 24;357(2):173-9 [PMID: 15907826]
  7. Chaos Solitons Fractals. 2020 Oct;139:110033 [PMID: 32834594]
  8. Bull Math Biol. 2018 Aug;80(8):2209-2241 [PMID: 29948883]
  9. Mol Cancer Ther. 2014 Dec;13(12):3230-40 [PMID: 25349306]
  10. Phys Biol. 2019 Jun 19;16(4):041005 [PMID: 30991381]
  11. Math Med Biol. 2015 Mar;32(1):79-98 [PMID: 24114068]
  12. Lancet Oncol. 2013 Nov;14(12):1165-74 [PMID: 24131614]
  13. Cancer. 2018 Aug;124(16):3293-3306 [PMID: 30141837]
  14. Value Health. 2012 Sep-Oct;15(6):835-42 [PMID: 22999133]
  15. Lancet Oncol. 2021 Mar;22(3):341-350 [PMID: 33662286]
  16. Br J Cancer. 2016 May 24;114(11):1286-92 [PMID: 27070711]
  17. Cancer Sci. 2018 Apr;109(4):884-892 [PMID: 29352488]
  18. PLoS One. 2020 Mar 11;15(3):e0229668 [PMID: 32160217]
  19. Cancers (Basel). 2022 Oct 22;14(21): [PMID: 36358603]
  20. Am J Public Health. 2006 Mar;96(3):452-8 [PMID: 16449591]
  21. Salud Publica Mex. 2011;53 Suppl 2:s144-55 [PMID: 21877080]
  22. J Natl Cancer Inst. 2011 Jan 19;103(2):117-28 [PMID: 21228314]
  23. Risk Anal. 2018 Dec;38(12):2703-2721 [PMID: 29975984]
  24. Int J Cancer. 2021 Apr 5;: [PMID: 33818764]
  25. J Oncol Pract. 2011 May;7(3 Suppl):e8s-e15s [PMID: 21886513]
  26. BMC Health Serv Res. 2019 Nov 19;19(1):845 [PMID: 31739783]
  27. Nat Rev Cancer. 2008 Mar;8(3):227-34 [PMID: 18273038]
  28. Nat Rev Cancer. 2015 Dec;15(12):730-45 [PMID: 26597528]
  29. Int J Environ Res Public Health. 2021 Nov 22;18(22): [PMID: 34832016]
  30. N Engl J Med. 2011 May 26;364(21):2060-5 [PMID: 21612477]
  31. Health Policy. 2019 Dec;123(12):1210-1220 [PMID: 31587819]
  32. Int J Environ Res Public Health. 2020 Aug 08;17(16): [PMID: 32784439]
  33. PLoS One. 2023 Feb 14;18(2):e0275546 [PMID: 36787303]
  34. Lancet Oncol. 2011 Sep;12(10):933-80 [PMID: 21958503]

Grants

  1. 11740052022/EAFIT University
  2. Cohort 4/MSD (United States)

Word Cloud

Created with Highcharts 10.0.0cancerhealthmodelpublicearlycarecoststreatmentmathematicalstrategiespoliciesspendingepidemiologicalindicatorsColombiamortalitydetectionreductionincidenceconstantlygrowingworldwideplacingpressuresystemsincreasingassociatedparticularlow-middle-incomecountriesexpectedfaceseriouschallengesrelatedcaringmajorityworld'snewcasesnext10yearsstudyproposeallowssimulationdifferentfocusedcombiningwayaimedefficientmanagementbettercandeterminedvalidationcalibrationusedataColombia-whichaccordingWorldBankupper-middle-incomecountryresultssimulationsusingproposedcalibratedvalidatedindicateeffectivestrategyreducingfinancialburdenconsistscombinationgreaterefficiencystagesapproachfoundpresent38%rate20%%GDPcomparedbaselinescenarioHenceprioritizecomprehensivemodelsfocuspatient-centeredpreventionMathematicalModelingAssessmentPublicPoliciesCancerHealth-CareSystemImplementedColombianCasediscretetimesystemidentifiabilityanalysismodelingparameterestimationsensitivityanalyses

Similar Articles

Cited By