Assessment of Electrical Brain Activity of Healthy Volunteers Exposed to 3.5 GHz of 5G Signals within Environmental Levels: A Controlled-Randomised Study.

Layla Jamal, Lydia Yahia-Cherif, Laurent Hugueville, Paul Mazet, Philippe Lévêque, Brahim Selmaoui
Author Information
  1. Layla Jamal: Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France. ORCID
  2. Lydia Yahia-Cherif: Paris Brain Institute (ICM), Center for NeuroImaging Research (CENIR), Sorbonne University, INSERM U1127, CNRS UMR7225, Pitié-Salpêtrière Hospital, 75013 Paris, France.
  3. Laurent Hugueville: Paris Brain Institute (ICM), Center for NeuroImaging Research (CENIR), Sorbonne University, INSERM U1127, CNRS UMR7225, Pitié-Salpêtrière Hospital, 75013 Paris, France.
  4. Paul Mazet: Technical Centre for Mechanical Industries (CETIM), 52 Avenue Félix Louat, 60300 Senlis, France.
  5. Philippe Lévêque: XLIM Research Institute, University of Limoges, UMR CNRS 7252, 123 Avenue Albert Thomas, 87000 Limoges, France. ORCID
  6. Brahim Selmaoui: Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France. ORCID

Abstract

Following the recent deployment of fifth-generation (5G) radio frequencies, several questions about their health impacts have been raised. Due to the lack of experimental research on this subject, the current study aimed to investigate the bio-physiological effects of a generated 3.5 GHz frequency. For this purpose, the wake electroencephalograms (EEG) of 34 healthy volunteers were explored during two "real" and "sham" exposure sessions. The electromagnetic fields were antenna-emitted in an electrically shielded room and had an electrical field root-mean-square intensity of 2 V/m, corresponding to the current outdoor exposure levels. The sessions were a maximum of one week apart, and both contained an exposure period of approximately 26 min and were followed by a post-exposure period of 17 min. The power spectral densities (PSDs) of the beta, alpha, theta, and delta bands were then computed and corrected based on an EEG baseline period. This was acquired for 17 min before the subsequent phases were recorded under two separate conditions: eyes open (EO) and eyes closed (EC). A statistical analysis showed an overall non-significant change in the studied brain waves, except for a few electrodes in the alpha, theta, and delta spectra. This change was translated into an increase or decrease in the PSDs, in response to the EO and EC conditions. In conclusion, this studhy showed that 3.5 GHz exposure, within the regulatory levels and exposure parameters used in this protocol, did not affect brain activity in healthy young adults. Moreover, to our knowledge, this was the first laboratory-controlled human EEG study on 5G effects. It attempted to address society's current concern about the impact of 5G exposure on human health at environmental levels.

Keywords

References

  1. Int J Psychophysiol. 2012 May;84(2):164-71 [PMID: 22326594]
  2. Environ Res. 2019 Aug;175:274-286 [PMID: 31146099]
  3. Scand J Work Environ Health. 2000 Apr;26(2):87-92 [PMID: 10817372]
  4. Bioelectromagnetics. 2008 Jan;29(1):1-10 [PMID: 17786925]
  5. Int J Radiat Biol. 2022;98(7):1210-1221 [PMID: 34995145]
  6. Int J Environ Res Public Health. 2019 Apr 28;16(9): [PMID: 31035391]
  7. Sci Rep. 2015 Sep 23;5:14434 [PMID: 26395526]
  8. PLoS One. 2015 Jun 08;10(6):e0129496 [PMID: 26053854]
  9. Electromagn Biol Med. 2017;36(2):202-212 [PMID: 27874295]
  10. Neuroreport. 2007 May 28;18(8):803-7 [PMID: 17471070]
  11. Bioelectromagnetics. 2019 Jul;40(5):291-318 [PMID: 31215052]
  12. J Sleep Res. 2002 Dec;11(4):289-95 [PMID: 12464096]
  13. Clin Neurophysiol. 2013 Jul;124(7):1303-8 [PMID: 23428307]
  14. Neuropsychobiology. 2012;66(4):201-20 [PMID: 23075830]
  15. Bioelectromagnetics. 2010 Sep;31(6):434-44 [PMID: 20564174]
  16. Bioelectromagnetics. 2013 Jan;34(1):31-42 [PMID: 22674213]
  17. Int J Radiat Biol. 2022;98(5):986-995 [PMID: 34797205]
  18. Clin Neurophysiol. 2011 Nov;122(11):2203-16 [PMID: 21570341]
  19. Clin Neurophysiol. 2012 Jan;123(1):121-8 [PMID: 21873111]
  20. Environ Res. 2015 Nov;143(Pt A):112-22 [PMID: 26475988]
  21. Health Phys. 2010 Dec;99(6):818-36 [PMID: 21068601]
  22. Clin EEG Neurosci. 2017 May;48(3):168-175 [PMID: 27118764]
  23. Neuropsychobiology. 2015;72(3-4):165-77 [PMID: 26900936]
  24. J Clin Neurophysiol. 2016 Aug;33(4):308-11 [PMID: 27482794]
  25. Int J Radiat Biol. 2008 Jan;84(1):69-79 [PMID: 18058332]
  26. Int J Radiat Biol. 2023;99(10):1639-1647 [PMID: 36867417]
  27. Bioelectromagnetics. 1997;18(2):172-6 [PMID: 9084868]
  28. Australas Phys Eng Sci Med. 2007 Dec;30(4):274-80 [PMID: 18274067]
  29. Br J Clin Pharmacol. 2000 Jul;50(1):21-6 [PMID: 10886113]
  30. Health Phys. 2020 Aug;119(2):236-246 [PMID: 32576739]
  31. J Neurophysiol. 2015 Apr 1;113(7):2753-9 [PMID: 25695646]
  32. Clin Neurophysiol. 2007 Dec;118(12):2765-73 [PMID: 17911042]
  33. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  34. Bioelectromagnetics. 2008 Sep;29(6):488-97 [PMID: 18421712]
  35. J Neurosci Methods. 2007 Aug 15;164(1):177-90 [PMID: 17517438]
  36. Bioelectromagnetics. 2008 Sep;29(6):479-87 [PMID: 18431738]
  37. Biol Psychol. 2017 Oct;129:293-304 [PMID: 28943465]
  38. Sci Rep. 2021 Dec 3;11(1):23403 [PMID: 34862418]
  39. Clin Neurophysiol. 2010 Feb;121(2):163-71 [PMID: 20005167]
  40. Int J Radiat Biol. 2023;99(8):1167-1177 [PMID: 36525560]
  41. Bioelectromagnetics. 2021 Jul;42(5):407-414 [PMID: 33998007]
  42. Phys Med Biol. 1996 Nov;41(11):2271-93 [PMID: 8938026]
  43. Sci Rep. 2018 Dec 20;8(1):18010 [PMID: 30573783]
  44. IEEE Trans Biomed Eng. 2013 Jun;60(6):1702-10 [PMID: 23358937]
  45. Neurosci Res. 2020 Jul;156:102-107 [PMID: 31991204]
  46. Int J Environ Res Public Health. 2019 Sep 13;16(18): [PMID: 31540320]
  47. Neurosci Res. 2005 Nov;53(3):265-70 [PMID: 16102863]
  48. Eur J Neurosci. 2007 Mar;25(6):1908-13 [PMID: 17432975]
  49. Front Neurosci. 2013 Dec 26;7:267 [PMID: 24431986]
  50. Radiat Res. 2015 Dec;184(6):568-77 [PMID: 26600173]

MeSH Term

Young Adult
Humans
Healthy Volunteers
Electricity
Electrodes
Electroencephalography
Brain

Word Cloud

Created with Highcharts 10.0.0exposure5GEEGcurrent35GHzlevelsperiodminbrainradiofrequencieshealthstudyeffectswakehealthytwosessionselectrical17PSDsalphathetadeltaeyesEOECshowedchangewithinactivityhumanFollowingrecentdeploymentfifth-generationseveralquestionsimpactsraisedDuelackexperimentalresearchsubjectaimedinvestigatebio-physiologicalgeneratedfrequencypurposeelectroencephalograms34volunteersexplored"real""sham"electromagneticfieldsantenna-emittedelectricallyshieldedroomfieldroot-mean-squareintensity2V/mcorrespondingoutdoormaximumoneweekapartcontainedapproximately26followedpost-exposurepowerspectraldensitiesbetabandscomputedcorrectedbasedbaselineacquiredsubsequentphasesrecordedseparateconditions:openclosedstatisticalanalysisoverallnon-significantstudiedwavesexceptelectrodesspectratranslatedincreasedecreaseresponseconditionsconclusionstudhyregulatoryparametersusedprotocolaffectyoungadultsMoreoverknowledgefirstlaboratory-controlledattemptedaddresssociety'sconcernimpactenvironmentalAssessmentElectricalBrainActivityHealthyVolunteersExposedSignalsEnvironmentalLevels:Controlled-RandomisedStudyhumansrestingstate

Similar Articles

Cited By