Actinoquinazolinone, a New Quinazolinone Derivative from a Marine Bacterium sp. CNQ-617, Suppresses the Motility of Gastric Cancer Cells.

Sultan Pulat, Da-Ae Kim, Prima F Hillman, Dong-Chan Oh, Hangun Kim, Sang-Jip Nam, William Fenical
Author Information
  1. Sultan Pulat: College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea. ORCID
  2. Da-Ae Kim: Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
  3. Prima F Hillman: Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
  4. Dong-Chan Oh: Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
  5. Hangun Kim: College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea. ORCID
  6. Sang-Jip Nam: Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea. ORCID
  7. William Fenical: Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.

Abstract

A HPLC-UV guided fractionation of the culture broth of sp. CNQ-617 has led to the isolation of a new Quinazolinone derivative, actinoquinazolinone (), as well as two known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one () and 7-methoxy-8-hydroxy cycloanthranilylproline (). The interpretation of 1D, 2D NMR, and MS spectroscopic data revealed the planar structure of . Furthermore, compound suppressed invasion ability by inhibiting epithelial-mesenchymal transition markers (EMT) in AGS cells at a concentration of 5 µM. In addition, compound decreased the expression of seventeen genes related to human cell motility and slightly suppressed the signal transducer and activator of the transcription 3 (STAT3) signal pathway in AGS cells. Together, these results demonstrate that is a potent inhibitor of Gastric Cancer cells.

Keywords

References

  1. Front Microbiol. 2021 Jun 02;12:680879 [PMID: 34149672]
  2. Cell Syst. 2019 Aug 28;9(2):109-127 [PMID: 31465728]
  3. Drug Res (Stuttg). 2013 Mar;63(3):129-36 [PMID: 23444171]
  4. J Nat Prod. 2020 Sep 25;83(9):2749-2755 [PMID: 32840364]
  5. J Antibiot (Tokyo). 2007 Mar;60(3):179-83 [PMID: 17446689]
  6. Nature. 2019 Sep;573(7774):439-444 [PMID: 31485072]
  7. Eur Arch Otorhinolaryngol. 1997;254 Suppl 1:S138-43 [PMID: 9065649]
  8. J Med Chem. 1999 Mar 25;42(6):1018-26 [PMID: 10090785]
  9. J Med Chem. 2000 Nov 16;43(23):4479-87 [PMID: 11087572]
  10. J Nat Prod. 2011 Oct 28;74(10):2265-8 [PMID: 21939253]
  11. Mar Drugs. 2021 Nov 05;19(11): [PMID: 34822495]
  12. Clin Transl Med. 2021 Dec;11(12):e595 [PMID: 34936736]
  13. Cell. 2023 Apr 13;186(8):1564-1579 [PMID: 37059065]
  14. ACS Omega. 2022 Jan 03;7(2):1722-1732 [PMID: 35071867]
  15. Acta Pharm. 2013 Mar;63(1):1-18 [PMID: 23482309]
  16. Bioorg Med Chem Lett. 2015 Mar 1;25(5):1072-7 [PMID: 25638040]
  17. Nat Rev Mol Cell Biol. 2006 Oct;7(10):713-26 [PMID: 16990851]
  18. Med Oncol. 2017 Apr;34(4):59 [PMID: 28315227]
  19. Antonie Van Leeuwenhoek. 2005 Jan;87(1):43-8 [PMID: 15726290]
  20. Int J Oncol. 2018 Nov;53(5):1980-1996 [PMID: 30132516]
  21. Mar Drugs. 2020 Oct 21;18(10): [PMID: 33096696]
  22. Mol Cancer Res. 2016 Nov;14(11):1033-1044 [PMID: 27555595]
  23. Bioorg Med Chem. 2002 Dec;10(12):3817-27 [PMID: 12413835]
  24. PLoS One. 2015 Mar 23;10(3):e0121747 [PMID: 25799492]
  25. Mar Drugs. 2020 Dec 28;19(1): [PMID: 33379196]
  26. Chirality. 2022 Feb;34(2):421-427 [PMID: 34806785]
  27. Bioorg Med Chem Lett. 2012 Mar 1;22(5):1879-85 [PMID: 22326394]
  28. Semin Cancer Biol. 2019 Dec;59:36-49 [PMID: 30742905]
  29. Redox Biol. 2022 Jun;52:102317 [PMID: 35483272]
  30. J Antibiot (Tokyo). 2009 Aug;62(8):439-44 [PMID: 19662085]
  31. World J Clin Cases. 2022 Mar 16;10(8):2369-2381 [PMID: 35434070]
  32. Cancers (Basel). 2023 Jan 12;15(2): [PMID: 36672439]
  33. Bioorg Med Chem. 1996 Apr;4(4):547-51 [PMID: 8735842]
  34. Mar Drugs. 2023 Feb 25;21(3): [PMID: 36976200]
  35. J Med Chem. 2016 May 26;59(10):5011-21 [PMID: 27088777]
  36. Cancer Med. 2019 Sep;8(12):5574-5576 [PMID: 31397113]
  37. J Am Chem Soc. 2014 Mar 26;136(12):4565-74 [PMID: 24575817]
  38. Phytother Res. 2016 Nov;30(11):1862-1871 [PMID: 27530464]
  39. Front Cell Dev Biol. 2020 Apr 08;8:201 [PMID: 32322580]
  40. Sci Rep. 2017 Aug 15;7(1):8136 [PMID: 28811522]
  41. J Genet Eng Biotechnol. 2022 Jan 26;20(1):14 [PMID: 35080679]
  42. Int J Mol Sci. 2016 Sep 27;17(10): [PMID: 27689991]
  43. PLoS One. 2015 Sep 15;10(9):e0137889 [PMID: 26371759]
  44. Genes Cancer. 2012 May;3(5-6):334-40 [PMID: 23226571]
  45. Mar Drugs. 2022 Feb 21;20(2): [PMID: 35200684]
  46. Biochim Biophys Acta. 2006 Jan-Feb;1759(1-2):99-107 [PMID: 16494957]
  47. J Nat Prod. 2011 May 27;74(5):1331-4 [PMID: 21495659]
  48. Antibiotics (Basel). 2019 Jul 29;8(3): [PMID: 31362405]
  49. Nat Prod Res. 2022 May;36(10):2458-2464 [PMID: 33736548]
  50. J Med Chem. 1991 Apr;34(4):1492-503 [PMID: 1901912]
  51. Turk J Pharm Sci. 2019 Sep;16(3):282-291 [PMID: 32454726]
  52. Tumour Biol. 2017 Oct;39(10):1010428317716501 [PMID: 28978268]
  53. Mol Biosyst. 2008 Jun;4(6):542-50 [PMID: 18493651]
  54. J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):483-492 [PMID: 30729343]
  55. J Nat Prod. 2019 Dec 27;82(12):3456-3463 [PMID: 31823605]
  56. Phytomedicine. 2019 Mar 15;56:10-20 [PMID: 30668330]
  57. J Nat Prod. 2004 Jul;67(7):1131-4 [PMID: 15270566]
  58. Mar Drugs. 2022 Mar 18;20(3): [PMID: 35323513]
  59. Int J Med Sci. 2020 Jan 1;17(1):103-111 [PMID: 31929744]
  60. Asian Pac J Trop Med. 2015 Nov;8(11):937-943 [PMID: 26614994]
  61. Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202201103 [PMID: 35165986]
  62. Bioorg Med Chem Lett. 2016 May 1;26(9):2273-7 [PMID: 27040656]
  63. Front Pharmacol. 2022 Sep 08;13:986946 [PMID: 36160406]
  64. Arch Pharm Res. 2003 Jul;26(7):511-5 [PMID: 12934640]
  65. Nat Chem Biol. 2006 Dec;2(12):666-73 [PMID: 17108984]
  66. PeerJ. 2022 Aug 15;10:e13901 [PMID: 35990908]
  67. Mar Drugs. 2021 Dec 20;19(12): [PMID: 34940714]
  68. J Nat Prod. 2011 Jan 28;74(1):32-7 [PMID: 21158423]
  69. Arch Pharm Res. 2013 Jun;36(6):660-70 [PMID: 23529860]
  70. Phytochemistry. 2003 Sep;64(2):609-15 [PMID: 12943784]
  71. J Nat Prod. 2021 Feb 26;84(2):466-473 [PMID: 33491454]
  72. Antimicrob Agents Chemother. 2005 Mar;49(3):1169-76 [PMID: 15728920]
  73. Biomolecules. 2020 Aug 15;10(8): [PMID: 32824158]
  74. Org Lett. 2021 Mar 19;23(6):2109-2113 [PMID: 33661652]
  75. Front Chem. 2021 Oct 12;9:756962 [PMID: 34712650]
  76. Cell Death Dis. 2020 Nov 23;11(11):1009 [PMID: 33230171]
  77. Bioorg Med Chem. 2016 Jun 1;24(11):2361-81 [PMID: 27112448]
  78. Cancers (Basel). 2022 Jan 07;14(2): [PMID: 35053454]
  79. Cancer Res. 1987 Feb 15;47(4):936-42 [PMID: 3802100]
  80. Pharmacol Res. 2022 Aug;182:106311 [PMID: 35716914]
  81. Chem Biodivers. 2020 Dec;17(12):e2000769 [PMID: 33140544]
  82. Breast Cancer Res Treat. 2010 Dec;124(3):653-66 [PMID: 20213079]
  83. J Med Chem. 1982 Jun;25(6):703-8 [PMID: 7097723]

Word Cloud

Created with Highcharts 10.0.0spcellsCNQ-617quinazolinoneactinoquinazolinonecompoundsuppressedAGSmotilitysignalgastriccancerHPLC-UVguidedfractionationculturebrothledisolationnewderivativewelltwoknowncompounds7-hydroxy-6-methoxy-34-dihydroquinazolin-4-one7-methoxy-8-hydroxycycloanthranilylprolineinterpretation1D2DNMRMSspectroscopicdatarevealedplanarstructureFurthermoreinvasionabilityinhibitingepithelial-mesenchymaltransitionmarkersEMTconcentration5µMadditiondecreasedexpressionseventeengenesrelatedhumancellslightlytransduceractivatortranscription3STAT3pathwayTogetherresultsdemonstratepotentinhibitorActinoquinazolinoneNewQuinazolinoneDerivativeMarineBacteriumSuppressesMotilityGastricCancerCellsStreptomycesmarinenaturalproducts

Similar Articles

Cited By (1)