Conventional Anthelmintic Concentration of Deltamethrin Immersion Disorder in the Gill Immune Responses of Crucian Carp.

Hao Wu, Xiping Yuan, Jinwei Gao, Min Xie, Xing Tian, Zhenzhen Xiong, Rui Song, Zhonggui Xie, Dongsheng Ou
Author Information
  1. Hao Wu: Hunan Fisheries Science Institute, Changsha 410153, China.
  2. Xiping Yuan: Hunan Fisheries Science Institute, Changsha 410153, China.
  3. Jinwei Gao: Hunan Fisheries Science Institute, Changsha 410153, China. ORCID
  4. Min Xie: Hunan Fisheries Science Institute, Changsha 410153, China.
  5. Xing Tian: Hunan Fisheries Science Institute, Changsha 410153, China.
  6. Zhenzhen Xiong: Hunan Fisheries Science Institute, Changsha 410153, China.
  7. Rui Song: Hunan Fisheries Science Institute, Changsha 410153, China.
  8. Zhonggui Xie: Hunan Fisheries Science Institute, Changsha 410153, China.
  9. Dongsheng Ou: Hunan Fisheries Science Institute, Changsha 410153, China.

Abstract

Current treatment strategies for parasitic infectious diseases in crucian carp primarily rely on chemotherapy. As a commonly used antiparasitic agent, deltamethrin (DEL) may have the potential adverse effects on external mucosa of fish such as gills. In this study, 180 healthy juvenile crucian carp () (average weight: 8.8 ± 1.0 g) were randomly divided into three groups for 28 days, which were immersed in 0 μg/L, 0.3 μg/L, and 0.6 μg/L of DEL, respectively. The results of histological analysis revealed that severe hyperplasia in the secondary lamellae of gills was observed, and the number of goblet (mucus-secreting) cells increased significantly after DEL immersion. TUNEL staining indicated that the number of apoptotic cells increased in crucian carp gill. At the molecular level, the mRNA expression analysis revealed significant upregulation of apoptosis (caspase 3, caspase 8, and bax), autophagy (atg5 and beclin-1), and immune response (lzm, muc5, il-6, il-8, il-10, tnfα, ifnγ, tgfβ, tlr4, myd88, and nf-kb), whereas tight junction-related genes ( and ) were downregulated after DEL immersion, suggesting that DEL immersion altered innate immunity responses and promoted mucus secretion. Moreover, tandem mass tag (TMT)-based proteomics revealed that a total of 428 differentially expressed proteins (DEPs) contained 341 upregulated DEPs and 87 downregulated DEPs with function annotation were identified between the control and DEL groups. Functional analyses revealed that the DEPs were enriched in apoptotic process, phagosome, and lysosome pathways. Additionally, DEL immersion also drove gill microbiota to dysbiosis and an increase in potentially harmful bacteria such as . Overall, this study showed that DEL elicited shifts in the immune response and changes in the surface microbiota of fish. These results provide new perspectives on the conventional anthelmintic concentration of DEL immersion disorder of the gill immune microenvironment in crucian carp and theoretical support for future optimization of their practical application.

Keywords

References

  1. Environ Pollut. 2021 Oct 1;286:117319 [PMID: 33990053]
  2. Environ Pollut. 2020 Sep;264:114725 [PMID: 32388310]
  3. Environ Pollut. 2021 Oct 15;287:117612 [PMID: 34146995]
  4. mSystems. 2022 Apr 26;7(2):e0004722 [PMID: 35285678]
  5. Fish Shellfish Immunol. 2022 Dec;131:809-816 [PMID: 36257555]
  6. Aquat Toxicol. 2021 Aug;237:105895 [PMID: 34147820]
  7. Comp Biochem Physiol C Toxicol Pharmacol. 2021 Jan;239:108877 [PMID: 32828913]
  8. Aquat Toxicol. 2020 Feb;219:105377 [PMID: 31838306]
  9. Sci Total Environ. 2022 May 20;822:153622 [PMID: 35124035]
  10. Fish Shellfish Immunol. 2022 Aug;127:1-12 [PMID: 35667539]
  11. Ecotoxicol Environ Saf. 2022 Aug;241:113732 [PMID: 35679730]
  12. Fish Shellfish Immunol. 2022 Jan;120:560-568 [PMID: 34958920]
  13. Comp Biochem Physiol C Toxicol Pharmacol. 2021 Sep;247:109064 [PMID: 33905824]
  14. Aquat Toxicol. 2022 Sep;250:106257 [PMID: 35933907]
  15. Cell Host Microbe. 2023 Mar 8;31(3):433-446.e4 [PMID: 36738733]
  16. Sci Total Environ. 2023 Jan 20;857(Pt 2):159353 [PMID: 36252659]
  17. Sci Total Environ. 2022 Feb 1;806(Pt 3):151290 [PMID: 34743874]
  18. Environ Toxicol Pharmacol. 2006 May;21(3):246-53 [PMID: 21783665]
  19. Front Immunol. 2020 Sep 04;11:2154 [PMID: 33013908]
  20. Chemosphere. 2019 Dec;236:124423 [PMID: 31545209]
  21. Toxins (Basel). 2022 Jul 13;14(7): [PMID: 35878217]
  22. Sci Total Environ. 2021 Mar 25;762:143054 [PMID: 33127128]
  23. Dev Comp Immunol. 2017 Oct;75:99-108 [PMID: 28235585]
  24. Environ Pollut. 2020 Nov;266(Pt 3):115156 [PMID: 32663629]
  25. Ecotoxicol Environ Saf. 2021 Sep 1;220:112325 [PMID: 34052755]
  26. Microorganisms. 2021 Apr 29;9(5): [PMID: 33947022]
  27. Chemosphere. 2020 Jul;251:126434 [PMID: 32169701]
  28. Environ Sci Technol. 2022 Feb 1;56(3):1820-1829 [PMID: 35015514]
  29. Comp Biochem Physiol C Toxicol Pharmacol. 2019 Dec;226:108606 [PMID: 31422162]
  30. Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jan;263:109508 [PMID: 36368507]
  31. Aquat Toxicol. 2017 Jun;187:90-99 [PMID: 28399480]
  32. Sci Rep. 2022 Jun 16;12(1):10144 [PMID: 35710785]
  33. Sci Total Environ. 2020 May 1;715:136943 [PMID: 32007896]
  34. Front Microbiol. 2018 Jan 15;8:2664 [PMID: 29379473]
  35. Dev Cell. 2019 Apr 8;49(1):130-144.e6 [PMID: 30827897]
  36. Chemosphere. 2018 Sep;207:397-403 [PMID: 29803889]
  37. Comp Biochem Physiol C Toxicol Pharmacol. 2019 Nov;225:108584 [PMID: 31394255]
  38. Chemosphere. 2022 Nov;307(Pt 2):135814 [PMID: 35921887]
  39. Front Immunol. 2020 Oct 02;11:567941 [PMID: 33123139]
  40. Antioxidants (Basel). 2023 Jun 16;12(6): [PMID: 37372018]
  41. PLoS One. 2017 Dec 13;12(12):e0189103 [PMID: 29236729]
  42. Fish Shellfish Immunol Rep. 2022 Dec 14;4:100077 [PMID: 36589261]
  43. Dev Comp Immunol. 2011 Jan;35(1):88-93 [PMID: 20813128]
  44. Front Microbiol. 2022 Aug 30;13:968650 [PMID: 36110292]
  45. Front Immunol. 2021 May 31;12:672700 [PMID: 34135900]
  46. Aquat Toxicol. 2022 Aug;249:106211 [PMID: 35667248]
  47. Fish Shellfish Immunol. 2021 May;112:81-91 [PMID: 33675991]
  48. Fish Shellfish Immunol. 2023 Mar;134:108594 [PMID: 36754156]
  49. Environ Res. 2019 Mar;170:260-281 [PMID: 30599291]
  50. Mar Biotechnol (NY). 2022 Apr;24(2):366-379 [PMID: 35303209]
  51. Environ Sci Technol. 2023 Mar 7;57(9):3602-3611 [PMID: 36826516]
  52. Comp Biochem Physiol C Toxicol Pharmacol. 2020 Aug;234:108758 [PMID: 32289527]
  53. Ecotoxicol Environ Saf. 2021 Feb;209:111821 [PMID: 33360593]
  54. Ecotoxicol Environ Saf. 2021 Dec 1;225:112716 [PMID: 34478975]
  55. Lett Appl Microbiol. 2011 May;52(5):497-500 [PMID: 21323934]
  56. Environ Sci Pollut Res Int. 2023 Apr;30(19):55200-55213 [PMID: 36884173]
  57. Ecotoxicol Environ Saf. 2015 Dec;122:360-7 [PMID: 26318971]
  58. Fish Shellfish Immunol. 2020 Jan;96:32-40 [PMID: 31786343]
  59. Ecotoxicol Environ Saf. 2022 Mar 15;234:113421 [PMID: 35304335]

Grants

  1. CARS-45/Earmarked Fund for Agriculture Research System of China
  2. kq2208127/Natural Science Foundation of Changsha

Word Cloud

Created with Highcharts 10.0.0DELimmersiongillcruciancarp0revealedDEPs8μg/Limmunemicrobiotadeltamethrinfishgillsstudygroups3resultsanalysisnumbercellsincreasedapoptoticapoptosiscaspaseresponsedownregulatedproteomicsCurrenttreatmentstrategiesparasiticinfectiousdiseasesprimarilyrelychemotherapycommonlyusedantiparasiticagentmaypotentialadverseeffectsexternalmucosa180healthyjuvenileaverageweight:±1grandomlydividedthree28daysimmersed6respectivelyhistologicalseverehyperplasiasecondarylamellaeobservedgobletmucus-secretingsignificantlyTUNELstainingindicatedmolecularlevelmRNAexpressionsignificantupregulationbaxautophagyatg5beclin-1lzmmuc5il-6il-8il-10tnfαifnγtgfβtlr4myd88nf-kbwhereastightjunction-relatedgenessuggestingalteredinnateimmunityresponsespromotedmucussecretionMoreovertandemmasstagTMT-basedtotal428differentiallyexpressedproteinscontained341upregulated87functionannotationidentifiedcontrolFunctionalanalysesenrichedprocessphagosomelysosomepathwaysAdditionallyalsodrovedysbiosisincreasepotentiallyharmfulbacteriaOverallshowedelicitedshiftschangessurfaceprovidenewperspectivesconventionalanthelminticconcentrationdisordermicroenvironmenttheoreticalsupportfutureoptimizationpracticalapplicationConventionalAnthelminticConcentrationDeltamethrinImmersionDisorderGillImmuneResponsesCrucianCarpTMT-basedcellbarrier

Similar Articles

Cited By