Fine mapping of the Cepaea nemoralis shell colour and mid-banded loci using a high-density linkage map.

Margrethe Johansen, Suzanne Saenko, Menno Schilthuizen, Wellcome Sanger Institute Tree of Life Programme, Mark Blaxter, Angus Davison
Author Information
  1. Margrethe Johansen: School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK. m-johansen@outlook.com. ORCID
  2. Suzanne Saenko: Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands.
  3. Menno Schilthuizen: Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands. ORCID
  4. Mark Blaxter: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK. ORCID
  5. Angus Davison: School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK. ORCID

Abstract

Molluscs are a highly speciose phylum that exhibits an astonishing array of colours and patterns, yet relatively little progress has been made in identifying the underlying genes that determine phenotypic variation. One prominent example is the land snail Cepaea nemoralis for which classical genetic studies have shown that around nine loci, several physically linked and inherited together as a 'supergene', control the shell colour and banding polymorphism. As a first step towards identifying the genes involved, we used whole-genome resequencing of individuals from a laboratory cross to construct a high-density linkage map, and then trait mapping to identify 95% confidence intervals for the chromosomal region that contains the supergene, specifically the colour locus (C), and the unlinked mid-banded locus (U). The linkage map is made up of 215,593 markers, ordered into 22 linkage groups, with one large group making up ~27% of the genome. The C locus was mapped to a ~1.3 cM region on linkage group 11, and the U locus was mapped to a ~0.7 cM region on linkage group 15. The linkage map will serve as an important resource for further evolutionary and population genomic studies of C. nemoralis and related species, as well as the identification of candidate genes within the supergene and for the mid-banding phenotype.

References

  1. Genetics. 1954 Jan;39(1):89-116 [PMID: 17247470]
  2. PLoS One. 2011 Apr 27;6(4):e18927 [PMID: 21556137]
  3. Sci Rep. 2020 Feb 12;10(1):2442 [PMID: 32051478]
  4. Front Genet. 2019 Apr 09;10:326 [PMID: 31024632]
  5. BMC Biol. 2006 Nov 22;4:40 [PMID: 17121673]
  6. Evol Lett. 2018 Aug 07;2(4):297-309 [PMID: 30283683]
  7. Gigascience. 2017 Aug 1;6(8):1-12 [PMID: 28873964]
  8. Heredity (Edinb). 2019 Aug;123(2):162-175 [PMID: 30804571]
  9. PLoS Genet. 2008 Jan;4(1):e4 [PMID: 18208329]
  10. Evol Lett. 2021 May 07;5(3):196-213 [PMID: 34136269]
  11. Front Genet. 2019 Mar 14;10:216 [PMID: 30923538]
  12. Philos Trans R Soc Lond B Biol Sci. 2021 May 24;376(1825):20200163 [PMID: 33813892]
  13. Nat Genet. 1997 Mar;15(3):311-5 [PMID: 9054949]
  14. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4189-93 [PMID: 16593336]
  15. Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2209139119 [PMID: 36161960]
  16. Sci Rep. 2022 Oct 10;12(1):16971 [PMID: 36216849]
  17. Nature. 2016 Jun 01;534(7605):102-5 [PMID: 27251284]
  18. Mol Ecol. 2013 Jun;22(11):3077-89 [PMID: 23496771]
  19. Heredity (Edinb). 1976 Oct;37(2):253-69 [PMID: 1068112]
  20. Nat Genet. 2005 Aug;37(8):868-72 [PMID: 16041375]
  21. Bioinformatics. 2003 May 1;19(7):889-90 [PMID: 12724300]
  22. Nat Commun. 2019 Jan 25;10(1):436 [PMID: 30683860]
  23. Heredity (Edinb). 2019 Aug;123(2):153-161 [PMID: 30765853]
  24. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7369-73 [PMID: 3933004]
  25. Nature. 2016 Jun 01;534(7605):106-10 [PMID: 27251285]
  26. Nat Rev Genet. 2010 Jul;11(7):459-63 [PMID: 20548291]
  27. Genetics. 2019 Feb;211(2):495-502 [PMID: 30591514]
  28. Development. 2019 May 14;146(9): [PMID: 31088796]
  29. DNA Res. 2014 Feb;21(1):85-101 [PMID: 24107803]
  30. Bioinformatics. 2018 Jan 15;34(2):306-307 [PMID: 28968706]
  31. Cell. 2017 Oct 5;171(2):427-439.e21 [PMID: 28985565]
  32. Genetics. 2001 Dec;159(4):1701-16 [PMID: 11779808]
  33. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  34. Nat Ecol Evol. 2017 Apr 03;1(5):120 [PMID: 28812685]
  35. G3 (Bethesda). 2017 Jul 5;7(7):2353-2361 [PMID: 28526730]
  36. Heredity (Edinb). 2007 Apr;98(4):189-97 [PMID: 17389895]
  37. Animals (Basel). 2021 Aug 30;11(9): [PMID: 34573517]
  38. Cell. 1992 Dec 24;71(7):1195-204 [PMID: 1473152]
  39. PLoS One. 2013 May 21;8(5):e63928 [PMID: 23704958]
  40. Heredity (Edinb). 1950 Dec;4(3):275-94 [PMID: 14802986]
  41. Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):2997-3007 [PMID: 18522915]
  42. G3 (Bethesda). 2020 Jun 1;10(6):1929-1947 [PMID: 32284313]
  43. Front Genet. 2018 Jul 18;9:253 [PMID: 30073016]
  44. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  45. Mol Ecol Resour. 2020 Jul;20(4):980-994 [PMID: 32198971]
  46. Nat Commun. 2022 May 4;13(1):2427 [PMID: 35508532]
  47. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  48. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  49. Genome Biol Evol. 2016 Aug 25;8(8):2442-51 [PMID: 27401172]
  50. Bioinformatics. 2017 Dec 01;33(23):3726-3732 [PMID: 29036272]
  51. Genesis. 2015 Feb;53(2):237-44 [PMID: 25529990]
  52. Evol Lett. 2022 Aug 12;6(5):358-374 [PMID: 36254259]
  53. Mar Biotechnol (NY). 2017 Jun;19(3):301-309 [PMID: 28527015]
  54. Commun Biol. 2022 Sep 9;5(1):940 [PMID: 36085314]
  55. Sci Rep. 2019 Apr 29;9(1):6619 [PMID: 31036825]
  56. Nature. 2014 Sep 18;513(7518):375-381 [PMID: 25186727]
  57. Comp Biochem Physiol Part D Genomics Proteomics. 2019 Sep;31:100598 [PMID: 31202083]
  58. Genetics. 1960 Apr;45(4):393-411 [PMID: 17247932]
  59. Front Genet. 2021 Mar 19;12:630290 [PMID: 33815466]
  60. Philos Trans R Soc Lond B Biol Sci. 2021 May 24;376(1825):20200162 [PMID: 33813891]
  61. Curr Biol. 2002 Sep 17;12(18):1547-56 [PMID: 12372246]
  62. PeerJ. 2017 Sep 18;5:e3715 [PMID: 28948095]
  63. Genome Biol Evol. 2019 Nov 1;11(11):3291-3308 [PMID: 31687752]
  64. BMC Genomics. 2014 Mar 31;15:249 [PMID: 24684722]
  65. Mar Biotechnol (NY). 2007 Jan-Feb;9(1):66-73 [PMID: 17160637]
  66. G3 (Bethesda). 2021 Feb 9;11(2): [PMID: 33604668]
  67. Heredity (Edinb). 2008 Jul;101(1):48-52 [PMID: 18446184]

Grants

  1. /Wellcome Trust
  2. 206194/Wellcome Trust

MeSH Term

Humans
Color
Chromosome Mapping
Phenotype
Polymorphism, Genetic
Genome
Genetic Linkage

Word Cloud

Created with Highcharts 10.0.0linkagemaplocusgenesnemoraliscolourregionCgroupmadeidentifyingCepaeastudieslocishellhigh-densitymappingsupergenemid-bandedUmappedMolluscshighlyspeciosephylumexhibitsastonishingarraycolourspatternsyetrelativelylittleprogressunderlyingdeterminephenotypicvariationOneprominentexamplelandsnailclassicalgeneticshownaroundnineseveralphysicallylinkedinheritedtogether'supergene'controlbandingpolymorphismfirststeptowardsinvolvedusedwhole-genomeresequencingindividualslaboratorycrossconstructtraitidentify95%confidenceintervalschromosomalcontainsspecificallyunlinked215593markersordered22groupsonelargemaking~27%genome~13 cM11~07 cM15willserveimportantresourceevolutionarypopulationgenomicrelatedspecieswellidentificationcandidatewithinmid-bandingphenotypeFineusing

Similar Articles

Cited By