Chronic Aripiprazole and Trazodone Polypharmacy Effects on Systemic and Brain Cholesterol Biosynthesis.

Zeljka Korade, Allison Anderson, Marta Balog, Keri A Tallman, Ned A Porter, Karoly Mirnics
Author Information
  1. Zeljka Korade: Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA. ORCID
  2. Allison Anderson: Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68105, USA.
  3. Marta Balog: Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia.
  4. Keri A Tallman: Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA.
  5. Ned A Porter: Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA.
  6. Karoly Mirnics: Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA. ORCID

Abstract

The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body.

Keywords

References

  1. J Lipid Res. 2006 Jan;47(1):134-43 [PMID: 16258167]
  2. J Phys Chem B. 2020 Jul 23;124(29):6312-6320 [PMID: 32585096]
  3. J Clin Pharmacol. 1980 Feb-Mar;20(2-3):124-30 [PMID: 6991533]
  4. J Cell Sci. 2006 May 1;119(Pt 9):1876-85 [PMID: 16636072]
  5. Neurobiol Dis. 2012 Mar;45(3):923-9 [PMID: 22182693]
  6. J Lipid Res. 2013 Apr;54(4):1135-43 [PMID: 23381570]
  7. J Pharmacol Sci. 2014;124(1):99-111 [PMID: 24389877]
  8. Pharmaceuticals (Basel). 2020 Dec 21;13(12): [PMID: 33371196]
  9. Comput Math Methods Med. 2022 Sep 16;2022:8383885 [PMID: 36164611]
  10. J Lipid Res. 2022 Aug;63(8):100249 [PMID: 35839864]
  11. J Lipid Res. 2014 Sep;55(9):1933-43 [PMID: 25017465]
  12. Int J Antimicrob Agents. 2019 Oct;54(4):518-523 [PMID: 31173863]
  13. Metabolites. 2022 Jan 07;12(1): [PMID: 35050168]
  14. Biomolecules. 2022 Oct 21;12(10): [PMID: 36291744]
  15. Immunity. 2020 Jan 14;52(1):109-122.e6 [PMID: 31882361]
  16. ACS Pharmacol Transl Sci. 2022 Oct 25;5(11):1086-1096 [PMID: 36407960]
  17. Int J Neuropsychopharmacol. 2008 Mar;11(2):207-16 [PMID: 17868501]
  18. Arch Gen Psychiatry. 2010 Jan;67(1):26-36 [PMID: 20048220]
  19. Transl Psychiatry. 2022 Apr 4;12(1):139 [PMID: 35379782]
  20. J Am Chem Soc. 2010 Feb 24;132(7):2222-32 [PMID: 20121089]
  21. Int J Mol Sci. 2021 Aug 29;22(17): [PMID: 34502282]
  22. Sci Data. 2017 Oct 31;4:170167 [PMID: 29087369]
  23. Mol Genet Metab. 2013 Sep-Oct;110(1-2):176-8 [PMID: 23628460]
  24. J Neuroinflammation. 2015 Dec 01;12:225 [PMID: 26627476]
  25. Basic Clin Pharmacol Toxicol. 2020 Mar;126(3):236-246 [PMID: 31520576]
  26. J Lipid Res. 2023 May;64(5):100362 [PMID: 36958722]
  27. J Alzheimers Dis. 2019;67(3):911-921 [PMID: 30689583]
  28. J Neuroinflammation. 2004 Jul 30;1(1):14 [PMID: 15285801]
  29. Elife. 2015 Jun 26;4:e07999 [PMID: 26114596]
  30. Sci Transl Med. 2022 Oct 5;14(665):eadc9967 [PMID: 36197966]
  31. Mol Psychiatry. 2019 Apr;24(4):491-500 [PMID: 30742019]
  32. Innov Clin Neurosci. 2017 Aug 01;14(7-8):24-34 [PMID: 29552421]
  33. Brain Res. 2004 Apr 2;1003(1-2):9-17 [PMID: 15019558]
  34. Mens Sana Monogr. 2013 Jan;11(1):82-99 [PMID: 23678240]
  35. Transl Psychiatry. 2021 Feb 1;11(1):85 [PMID: 33526772]
  36. Diabetologia. 2022 Mar;65(3):490-505 [PMID: 34932133]
  37. Int J Neuropsychopharmacol. 2020 Feb 1;23(2):125-131 [PMID: 31867671]
  38. Chem Rev. 2011 Oct 12;111(10):5944-72 [PMID: 21861450]
  39. Hum Mol Genet. 2006 Mar 15;15(6):839-51 [PMID: 16446309]
  40. J Am Chem Soc. 2003 May 14;125(19):5801-10 [PMID: 12733921]
  41. Psychiatr Serv. 2022 May;73(5):510-517 [PMID: 34470507]
  42. J Basic Clin Pharm. 2016 Mar;7(2):27-31 [PMID: 27057123]
  43. PLoS One. 2020 Aug 3;15(8):e0235676 [PMID: 32746451]
  44. Trends Cell Biol. 2023 May 23;: [PMID: 37230924]
  45. Mol Genet Metab. 2000 Sep-Oct;71(1-2):163-74 [PMID: 11001807]
  46. Prog Lipid Res. 2016 Oct;64:138-151 [PMID: 27697512]
  47. Postgrad Med. 2017 Jan;129(1):140-148 [PMID: 27744763]
  48. J Lipid Res. 2011 Oct;52(10):1810-20 [PMID: 21817059]
  49. Child Neurol Open. 2019 May 05;6:2329048X19836589 [PMID: 31259193]
  50. Exp Ther Med. 2018 Jan;15(1):745-750 [PMID: 29399080]
  51. Drugs Aging. 1994 Apr;4(4):331-55 [PMID: 8019056]
  52. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  53. ACS Chem Neurosci. 2021 Feb 17;12(4):735-745 [PMID: 33528983]
  54. J Lipid Res. 2010 Nov;51(11):3259-69 [PMID: 20702862]
  55. J Neurosci. 2007 Apr 4;27(14):3734-42 [PMID: 17409237]
  56. Stroke. 2001 May;32(5):1208-15 [PMID: 11340235]
  57. Mol Cell Proteomics. 2010 Jul;9(7):1461-75 [PMID: 20305089]
  58. J Am Geriatr Soc. 2018 Dec;66(12):2254-2258 [PMID: 30423194]
  59. ACS Chem Neurosci. 2017 Sep 20;8(9):2027-2038 [PMID: 28636360]
  60. BJU Int. 2003 Sep;92(4):441-6 [PMID: 12930437]
  61. Eur J Hum Genet. 2008 May;16(5):535-41 [PMID: 18285838]
  62. Hum Mol Genet. 2003 Jul 1;12(13):1631-41 [PMID: 12812989]
  63. Pharmacotherapy. 2004 Feb;24(2):212-28 [PMID: 14998222]
  64. Pharmacopsychiatry. 2006 Nov;39(6):232 [PMID: 17124647]
  65. J Biol Chem. 2020 Dec 18;295(51):17549-17559 [PMID: 33453997]
  66. Int J Environ Res Public Health. 2011 Jul;8(7):2980-3018 [PMID: 21845170]
  67. Free Radic Res. 2015;49(7):835-49 [PMID: 25381800]
  68. J Lipid Res. 2011 Jun;52(6):1222-1233 [PMID: 21402677]

Grants

  1. R01 MH067234/NIMH NIH HHS

MeSH Term

Humans
Female
Male
Mice
Animals
Aripiprazole
Trazodone
Chromatography, Liquid
Polypharmacy
Tandem Mass Spectrometry
Cholesterol
Sterols
Brain
Phytosterols

Chemicals

Aripiprazole
Trazodone
Cholesterol
Sterols
Phytosterols

Word Cloud

Created with Highcharts 10.0.0ARITRZsterolbiosynthesisDHCR7micemetabolitesbrainconcurrentuseseveralmedicationsaripiprazoletrazodoneadditioneffects7-dehydrocholesterolevaluatesystemiccholesterolsterolsorgansprofilealteredIBA1commonpracticetreatmentcomplexpsychiatricconditionsOnecommonlyusedcombinationantipsychoticantidepressantdopamineserotoninsystemscompoundsinhibitorsreductaseenzymenervoussystemdistributionadulttreated21daysparentdrugsanalyzedvarioususingLC-MS/MSanalysesrevealedreadilydetectableleadingchangeslevelsdifferedacrosstissuesnotablesexdifferencesFemaleshowedhigherturnoverclearancepost-lanosterolintermediatessignificantlyinterferingexposureleddecreasedionizedcalcium-bindingadaptormolecule1increasedproteinexpressioncortexChangesalsoidentifiedspleenliverserumunderscoringeffectLong-termwarrantsstudiesfullylastingconsequenceswholebodyChronicAripiprazoleTrazodonePolypharmacyEffectsSystemicBrainCholesterolBiosynthesisdesmosterol

Similar Articles

Cited By