The Potential of Deep Learning to Advance Clinical Applications of Computational Biomechanics.

George A Truskey
Author Information
  1. George A Truskey: Department of Biomedical Engineering, Duke University, Durham, NC 27701, USA. ORCID

Abstract

When combined with patient information provided by advanced imaging techniques, computational biomechanics can provide detailed patient-specific information about stresses and strains acting on tissues that can be useful in diagnosing and assessing treatments for diseases and injuries. This approach is most advanced in cardiovascular applications but can be applied to other tissues. The challenges for advancing computational biomechanics for real-time patient diagnostics and treatment include errors and missing information in the patient data, the large computational requirements for the numerical solutions to multiscale biomechanical equations, and the uncertainty over boundary conditions and constitutive relations. This review summarizes current efforts to use deep learning to address these challenges and integrate large data sets and computational methods to enable real-time clinical information. Examples are drawn from cardiovascular fluid mechanics, soft-tissue mechanics, and bone biomechanics. The application of deep-learning convolutional neural networks can reduce the time taken to complete image segmentation, and meshing and solution of finite element models, as well as improving the accuracy of inlet and outlet conditions. Such advances are likely to facilitate the adoption of these models to aid in the assessment of the severity of cardiovascular disease and the development of new surgical treatments.

Keywords

References

  1. Biomed Mater Eng. 2014;24(1):341-7 [PMID: 24211915]
  2. Med Phys. 2021 Jan;48(1):7-18 [PMID: 33222226]
  3. Int J Numer Method Biomed Eng. 2021 Apr;37(4):e3438 [PMID: 33463004]
  4. Nat Methods. 2021 Feb;18(2):203-211 [PMID: 33288961]
  5. Front Med Technol. 2022 Dec 06;4:1034801 [PMID: 36561284]
  6. Science. 1970 May 22;168(3934):977-9 [PMID: 5441028]
  7. J Biomech Eng. 2022 Dec 1;144(12): [PMID: 36218246]
  8. Front Phys. 2019 Sep;7: [PMID: 31903394]
  9. Comput Med Imaging Graph. 2018 Dec;70:165-172 [PMID: 30423501]
  10. Neurobiol Dis. 2021 Jan;148:105210 [PMID: 33259894]
  11. Biology (Basel). 2020 Nov 24;9(12): [PMID: 33255292]
  12. Ann Biomed Eng. 2017 Mar;45(3):525-541 [PMID: 27933407]
  13. J Biomech. 2016 Mar 21;49(5):631-637 [PMID: 26944689]
  14. J Comput Sci. 2015 Jul;9:70-75 [PMID: 29152011]
  15. Annu Rev Biomed Eng. 2020 Jun 4;22:103-126 [PMID: 32155346]
  16. Nat Cell Biol. 2021 Nov;23(11):1117-1128 [PMID: 34750582]
  17. Nat Methods. 2019 Dec;16(12):1233-1246 [PMID: 31133758]
  18. Magn Reson Imaging. 2012 Nov;30(9):1323-41 [PMID: 22770690]
  19. Bioinformatics. 2011 Aug 15;27(16):2288-95 [PMID: 21737439]
  20. Arch Comput Methods Eng. 2022;29(7):4479-4555 [PMID: 36397952]
  21. Sci Rep. 2021 May 13;11(1):10240 [PMID: 33986368]
  22. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  23. Ann Biomed Eng. 2017 Aug;45(8):1908-1916 [PMID: 28444478]
  24. Cardiovasc Eng Technol. 2019 Dec;10(4):553-567 [PMID: 31531820]
  25. J R Soc Interface. 2015 May 6;12(106): [PMID: 25878125]
  26. Sci Rep. 2019 Jan 24;9(1):482 [PMID: 30679467]
  27. Sci Rep. 2020 Jun 11;10(1):9508 [PMID: 32528104]
  28. Circulation. 2022 Apr 19;145(16):1238-1253 [PMID: 35384713]
  29. J Am Coll Cardiol. 2013 Jun 4;61(22):2233-41 [PMID: 23562923]
  30. Nat Commun. 2020 Nov 4;11(1):5577 [PMID: 33149150]
  31. Acta Biomater. 2022 Jul 15;147:63-72 [PMID: 35643194]
  32. Med Biol Eng Comput. 2019 Oct;57(10):2319-2335 [PMID: 31446517]
  33. Adv Exp Med Biol. 2022;1356:195-221 [PMID: 35146623]
  34. Interface Focus. 2016 Apr 6;6(2):20150083 [PMID: 27051509]
  35. Sci Rep. 2021 Sep 10;11(1):18066 [PMID: 34508124]
  36. J Biomech Eng. 2022 Aug 1;144(8): [PMID: 35079785]
  37. Med Eng Phys. 2020 Apr;78:1-13 [PMID: 32081559]
  38. Methods Mol Biol. 2017;1627:429-451 [PMID: 28836218]
  39. Biophys Rev (Melville). 2023 Mar;4(1):011301 [PMID: 36686891]
  40. IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542 [PMID: 33596172]
  41. J Biomech. 2006;39(6):1116-28 [PMID: 16549100]
  42. Comput Methods Biomech Biomed Engin. 2010 Oct;13(5):625-40 [PMID: 20140798]
  43. Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15344-15349 [PMID: 31311866]
  44. J R Soc Interface. 2021 Sep;18(182):20210411 [PMID: 34493095]
  45. Biomech Model Mechanobiol. 2021 Jun;20(3):833-850 [PMID: 33683513]
  46. Front Cardiovasc Med. 2022 Jan 21;8:806107 [PMID: 35127866]
  47. Materials (Basel). 2020 Jul 09;13(14): [PMID: 32659947]
  48. Ann Biomed Eng. 2009 Nov;37(11):2153-69 [PMID: 19609676]
  49. Acta Biomater. 2017 Nov;63:227-235 [PMID: 28939354]
  50. Front Artif Intell. 2022 Aug 12;5:928181 [PMID: 36034591]
  51. Int J Mol Sci. 2021 Dec 18;22(24): [PMID: 34948394]
  52. Proc Inst Mech Eng H. 2013 Apr;227(4):464-78 [PMID: 23637222]
  53. Comput Methods Appl Mech Eng. 2021 Mar 1;375: [PMID: 33414569]
  54. Int J Comput Assist Radiol Surg. 2016 Jun;11(6):1051-9 [PMID: 27072836]

Grants

  1. R01 HL138252/NHLBI NIH HHS
  2. HL138252/NIH HHS

Word Cloud

Created with Highcharts 10.0.0informationcomputationalbiomechanicscanpatientcardiovascularmodelsadvancedtissuestreatmentschallengesreal-timedatalargeconditionsdeeplearningmechanicsneuralnetworksimagesegmentationfiniteelementcombinedprovidedimagingtechniquesprovidedetailedpatient-specificstressesstrainsactingusefuldiagnosingassessingdiseasesinjuriesapproachapplicationsappliedadvancingdiagnosticstreatmentincludeerrorsmissingrequirementsnumericalsolutionsmultiscalebiomechanicalequationsuncertaintyboundaryconstitutiverelationsreviewsummarizescurrenteffortsuseaddressintegratesetsmethodsenableclinicalExamplesdrawnfluidsoft-tissueboneapplicationdeep-learningconvolutionalreducetimetakencompletemeshingsolutionwellimprovingaccuracyinletoutletadvanceslikelyfacilitateadoptionaidassessmentseveritydiseasedevelopmentnewsurgicalPotentialDeepLearningAdvanceClinicalApplicationsComputationalBiomechanics

Similar Articles

Cited By