A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study.

Camelia Alexandra Coada, Miriam Santoro, Vladislav Zybin, Marco Di Stanislao, Giulia Paolani, Cecilia Modolon, Stella Di Costanzo, Lucia Genovesi, Marco Tesei, Antonio De Leo, Gloria Ravegnini, Dario De Biase, Alessio Giuseppe Morganti, Luigi Lovato, Pierandrea De Iaco, Lidia Strigari, Anna Myriam Perrone
Author Information
  1. Camelia Alexandra Coada: Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy. ORCID
  2. Miriam Santoro: Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy. ORCID
  3. Vladislav Zybin: Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
  4. Marco Di Stanislao: Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy.
  5. Giulia Paolani: Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
  6. Cecilia Modolon: Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
  7. Stella Di Costanzo: Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
  8. Lucia Genovesi: Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy.
  9. Marco Tesei: Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy. ORCID
  10. Antonio De Leo: Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy. ORCID
  11. Gloria Ravegnini: Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy. ORCID
  12. Dario De Biase: Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy. ORCID
  13. Alessio Giuseppe Morganti: Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
  14. Luigi Lovato: Pediatric and Adult CardioThoracic and Vascular, Oncohematologic and Emergency Radiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy. ORCID
  15. Pierandrea De Iaco: Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy.
  16. Lidia Strigari: Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy. ORCID
  17. Anna Myriam Perrone: Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy. ORCID

Abstract

BACKGROUND: Current prognostic models lack the use of pre-operative CT images to predict recurrence in endometrial cancer (EC) patients. Our study aimed to investigate the potential of radiomic features extracted from pre-surgical CT scans to accurately predict disease-free survival (DFS) among EC patients.
METHODS: Contrast-Enhanced CT (CE-CT) scans from 81 EC cases were used to extract the radiomic features from semi-automatically contoured volumes of interest. We employed a 10-fold cross-validation approach with a 6:4 training to test set and utilized data augmentation and balancing techniques. Univariate analysis was applied for feature reduction leading to the development of three distinct machine learning (ML) models for the prediction of DFS: LASSO-Cox, CoxBoost and Random Forest (RFsrc).
RESULTS: In the training set, the ML models demonstrated AUCs ranging from 0.92 to 0.93, sensitivities from 0.96 to 1.00 and specificities from 0.77 to 0.89. In the test set, AUCs ranged from 0.86 to 0.90, sensitivities from 0.89 to 1.00 and specificities from 0.73 to 0.90. Patients classified as having a high recurrence risk prediction by ML models exhibited significantly worse DSF (-value < 0.001) across all models.
CONCLUSIONS: Our findings demonstrate the potential of radiomics in predicting EC recurrence. While further validation studies are needed, our results underscore the promising role of radiomics in forecasting EC outcomes.

Keywords

References

  1. Front Oncol. 2023 Mar 02;13:1089807 [PMID: 36937399]
  2. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  3. Sci Rep. 2020 Oct 20;10(1):17769 [PMID: 33082371]
  4. J Magn Reson Imaging. 2021 Mar;53(3):928-937 [PMID: 33200420]
  5. Nucl Med Mol Imaging. 2018 Apr;52(2):99-108 [PMID: 29662558]
  6. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  7. J Magn Reson Imaging. 2023 Jun;57(6):1922-1933 [PMID: 36484309]
  8. Int J Mol Sci. 2020 Sep 29;21(19): [PMID: 33003368]
  9. Cancers (Basel). 2021 Feb 25;13(5): [PMID: 33668727]
  10. Stat Med. 1997 Feb 28;16(4):385-95 [PMID: 9044528]
  11. Eur J Cancer. 2015 Sep;51(13):1742-50 [PMID: 26049688]
  12. Acad Radiol. 2004 Feb;11(2):178-89 [PMID: 14974593]
  13. Psychother Res. 2023 Jul;33(6):683-695 [PMID: 36669124]
  14. Front Med (Lausanne). 2022 Feb 24;9:833283 [PMID: 35280863]
  15. Eur J Nucl Med Mol Imaging. 2018 Nov;45(12):2139-2146 [PMID: 30069578]
  16. Phys Imaging Radiat Oncol. 2019 Dec 17;13:1-6 [PMID: 33458300]
  17. Mol Imaging Biol. 2021 Oct;23(5):756-765 [PMID: 33763816]
  18. Cancer. 1950 Jan;3(1):32-5 [PMID: 15405679]
  19. Radiat Oncol. 2022 Dec 27;17(1):212 [PMID: 36575480]
  20. Int J Gynaecol Obstet. 2018 Oct;143 Suppl 2:109-117 [PMID: 30306593]
  21. Acad Radiol. 2023 Sep;30 Suppl 1:S220-S229 [PMID: 36610930]
  22. Future Oncol. 2022 May;18(15):1873-1884 [PMID: 35293227]
  23. J Gynecol Oncol. 2014 Apr;25(2):136-47 [PMID: 24761218]
  24. J Comput Assist Tomogr. 2019 Jan/Feb;43(1):136-142 [PMID: 30371608]
  25. Eur J Surg Oncol. 2021 Nov;47(11):2734-2741 [PMID: 34183201]
  26. BMC Cancer. 2021 Nov 24;21(1):1266 [PMID: 34819042]
  27. Turk J Med Sci. 2022 Jun;52(3):762-769 [PMID: 36326312]
  28. Gynecol Oncol Res Pract. 2016 Dec 13;3:14 [PMID: 27999680]
  29. EJNMMI Res. 2018 Aug 22;8(1):86 [PMID: 30136163]
  30. Biometrics. 1983 Jun;39(2):499-503 [PMID: 6354290]
  31. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  32. Radiographics. 2011 May-Jun;31(3):647-61 [PMID: 21571649]
  33. Obstet Gynecol. 2023 Jan 1;141(1):59-68 [PMID: 36701610]
  34. J Pathol. 2020 Mar;250(3):336-345 [PMID: 31829441]
  35. Front Oncol. 2022 Mar 02;12:864940 [PMID: 35311122]
  36. Am J Surg Pathol. 2013 Nov;37(11):1728-36 [PMID: 24061515]
  37. Int J Gynecol Cancer. 2010 Oct;20(7):1166-9 [PMID: 21495220]
  38. Comput Methods Programs Biomed. 2022 Jun;221:106906 [PMID: 35671602]
  39. Eur Radiol. 2019 Feb;29(2):792-805 [PMID: 29995239]
  40. PLoS One. 2016 Jun 21;11(6):e0157820 [PMID: 27326456]
  41. Eur Radiol. 2020 Aug;30(8):4306-4316 [PMID: 32253542]
  42. Diagnostics (Basel). 2021 Dec 24;12(1): [PMID: 35054199]
  43. PLoS One. 2022 Jun 8;17(6):e0267727 [PMID: 35675289]
  44. Int J Cancer. 2019 Oct 1;145(7):1719-1730 [PMID: 30387875]
  45. Acta Radiol. 2021 Sep;62(9):1257-1262 [PMID: 32927957]
  46. Front Oncol. 2022 Aug 18;12:966529 [PMID: 36059674]
  47. Int J Gynecol Cancer. 2021 Jan;31(1):12-39 [PMID: 33397713]
  48. Indian J Surg Oncol. 2019 Mar;10(1):225-231 [PMID: 30948905]
  49. Cancers (Basel). 2021 Mar 23;13(6): [PMID: 33806979]
  50. Front Oncol. 2019 Oct 09;9:1007 [PMID: 31649877]
  51. Eur J Radiol. 2022 Jan;146:110072 [PMID: 34861530]
  52. Int J Gynecol Cancer. 2020 Mar;30(3):378-382 [PMID: 32079712]
  53. J Pathol. 2020 Mar;250(3):323-335 [PMID: 31829442]
  54. Eur J Gynaecol Oncol. 2012;33(4):376-81 [PMID: 23091894]
  55. Diagn Interv Imaging. 2020 Jun;101(6):401-411 [PMID: 32037289]
  56. Eur Radiol. 2021 Jan;31(1):411-422 [PMID: 32749583]
  57. Cancer Imaging. 2020 May 1;20(1):33 [PMID: 32357923]
  58. Nature. 2013 May 2;497(7447):67-73 [PMID: 23636398]
  59. Br J Radiol. 2010 Jan;83(985):44-51 [PMID: 19620177]
  60. Int J Gynaecol Obstet. 2000 Aug;70(2):209-62 [PMID: 11041682]
  61. Korean J Radiol. 2019 Mar;20(3):405-410 [PMID: 30799571]
  62. AJR Am J Roentgenol. 2001 Mar;176(3):603-6 [PMID: 11222188]
  63. Eur J Radiol. 1998 Oct;28(3):250-5 [PMID: 9881261]

Grants

  1. J45F21002000001/Cassa di Risparmio in Bologna

Word Cloud

Created with Highcharts 10.0.00modelsECCTrecurrenceradiomicsetMLpredictendometrialcancerpatientspotentialfeaturespre-surgicalscanstrainingtestpredictionAUCssensitivities100specificities8990riskradiomicsBACKGROUND:Currentprognosticlackusepre-operativeimagesstudyaimedinvestigateextractedaccuratelydisease-freesurvivalDFSamongMETHODS:Contrast-EnhancedCE-CT81casesusedextractsemi-automaticallycontouredvolumesinterestemployed10-foldcross-validationapproach6:4utilizeddataaugmentationbalancingtechniquesUnivariateanalysisappliedfeaturereductionleadingdevelopmentthreedistinctmachinelearningDFS:LASSO-CoxCoxBoostRandomForestRFsrcRESULTS:demonstratedranging92939677ranged8673PatientsclassifiedhighexhibitedsignificantlyworseDSF-value<001acrossCONCLUSIONS:findingsdemonstratepredictingvalidationstudiesneededresultsunderscorepromisingroleforecastingoutcomesRadiomic-BasedMachineLearningModelPredictsEndometrialCancerRecurrenceUsingPreoperativeRadiomicFeatures:PilotStudyartificialintelligencepersonalizedmedicineprognosis

Similar Articles

Cited By