Finite Element Study for Mass Sensitivity of Love Surface Acoustic Wave Sensor with SiN-SiO Double-Covered Waveguiding Layer.

Luming Li, Mingyong Zhou, Lei Huang, Bingyan Jiang
Author Information
  1. Luming Li: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.
  2. Mingyong Zhou: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.
  3. Lei Huang: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.
  4. Bingyan Jiang: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

Abstract

Love surface acoustic wave (L-SAW) sensors are miniaturized, easy to integrate, and suitable for detection in liquid environments. In this paper, an L-SAW sensor with a thin SiN-SiO double-covered layer was proposed for samples with small mass loads. The output response, phase velocity of the acoustic wave, and the mass sensitivity were analyzed using the finite element method (FEM). The simulation results show that the SiN layer with high wave velocity greatly weakens the limitation of SiO on the phase velocity. The phase velocity can reach about 4300 m/s, which can increase the frequency shift when the same mass load is applied. Within a certain range, the mass sensitivity of the sensor is enhanced with the increase in the total thickness of the waveguiding layer and the thickness ratio of SiN in the double-covered layer. When the thickness ratio is 1:2, the peak value of the mass sensitivity of the sensor is approximately 50% higher than that achieved with only the SiO waveguiding layer. The surface average stress of the delay line region follows the same trend as the mass sensitivity. The increase in mass sensitivity is the result of the heightened stress on the sensor surface. This L-SAW sensor, featuring a double-covered waveguiding layer, demonstrates high sensitivity and a simple structure. The simulation results lay a foundation for the design and manufacture of SAW sensors.

Keywords

References

  1. Ultrasonics. 2004 Apr;42(1-9):409-11 [PMID: 15047320]
  2. Sensors (Basel). 2019 Apr 12;19(8): [PMID: 31013700]
  3. Ultrasonics. 2021 Aug;115:106460 [PMID: 34029835]
  4. Sensors (Basel). 2017 Mar 22;17(3): [PMID: 28327504]
  5. Biosensors (Basel). 2020 Aug 05;10(8): [PMID: 32764513]
  6. ACS Sens. 2020 Feb 28;5(2):362-369 [PMID: 31933360]
  7. Anal Chem. 2005 Jul 15;77(14):4595-603 [PMID: 16013878]
  8. Sensors (Basel). 2022 Jan 21;22(3): [PMID: 35161565]
  9. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Apr;65(4):657-664 [PMID: 29610095]
  10. Sensors (Basel). 2015 Jun 11;15(6):13839-50 [PMID: 26110408]
  11. Biosens Bioelectron. 2020 Nov 8;173:112807 [PMID: 33221509]
  12. Electrophoresis. 2018 Sep;39(18):2316-2320 [PMID: 29572871]
  13. Sensors (Basel). 2020 Mar 24;20(6): [PMID: 32213862]
  14. Biosens Bioelectron. 2016 Mar 15;77:573-9 [PMID: 26476015]
  15. Polymers (Basel). 2018 May 22;10(5): [PMID: 30966597]
  16. Biosens Bioelectron. 2017 Sep 15;95:48-54 [PMID: 28412660]

Grants

  1. 51920105008/Central South University

Word Cloud

Created with Highcharts 10.0.0masslayersensitivitysensorL-SAWdouble-coveredvelocitywaveguidingsurfacewavephaseincreasethicknessLoveacousticsensorsSiN-SiOfiniteelementmethodFEMsimulationresultsSiNhighSiOcanratiostressminiaturizedeasyintegratesuitabledetectionliquidenvironmentspaperthinproposedsamplessmallloadsoutputresponseanalyzedusingshowgreatlyweakenslimitationreach4300m/sfrequencyshiftloadappliedWithincertainrangeenhancedtotal1:2peakvalueapproximately50%higherachievedaveragedelaylineregionfollowstrendresultheightenedfeaturingdemonstratessimplestructurelayfoundationdesignmanufactureSAWFiniteElementStudyMassSensitivitySurfaceAcousticWaveSensorDouble-CoveredWaveguidingLayer

Similar Articles

Cited By

No available data.