Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges.

Shriyansh Srivastava, Deepika Sharma, Sachin Kumar, Aditya Sharma, Rishikesh Rijal, Ankush Asija, Suraj Adhikari, Sarvesh Rustagi, Sanjit Sah, Zahraa Haleem Al-Qaim, Prashant Bashyal, Aroop Mohanty, Joshuan J Barboza, Alfonso J Rodriguez-Morales, Ranjit Sah
Author Information
  1. Shriyansh Srivastava: Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India.
  2. Deepika Sharma: Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
  3. Sachin Kumar: Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India.
  4. Aditya Sharma: Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
  5. Rishikesh Rijal: Division of Infectious Diseases, University of Louisville, Louisville, KY, United States.
  6. Ankush Asija: WVU United Hospital Center, Bridgeport, WV, United States.
  7. Suraj Adhikari: Manipal College of Medical Sciences, Pokhara, Nepal.
  8. Sarvesh Rustagi: School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India.
  9. Sanjit Sah: Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India.
  10. Zahraa Haleem Al-Qaim: Al-Mustaqbal University College, Hilla, Iraq.
  11. Prashant Bashyal: Lumbini Medical College and Teaching Hospital, Kathmandu University Parvas, Palpa, Nepal.
  12. Aroop Mohanty: Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India.
  13. Joshuan J Barboza: Escuela de Medicina, Universidad C��sar Vallejo, Trujillo, Peru.
  14. Alfonso J Rodriguez-Morales: Master Program on Clinical Epidemiology and Biostatistics, Universidad Cient��fica del Sur, Lima, Peru.
  15. Ranjit Sah: Department of Microbiology, Tribhuvan University Teaching Spital, Institute of Medicine, Kathmandu, Nepal.

Abstract

The Marburg virus (MV), identified in 1967, has caused deadly outbreaks worldwide, the mortality rate of Marburg virus disease (MVD) varies depending on the outbreak and virus strain, but the average case fatality rate is around 50%. However, case fatality rates have varied from 24 to 88% in past outbreaks depending on virus strain and case management. Designated a priority pathogen by the National Institute of Allergy and Infectious Diseases (NIAID), MV induces hemorrhagic fever, organ failure, and coagulation issues in both humans and non-human primates. This review presents an extensive exploration of MVD outbreak evolution, virus structure, and genome, as well as the sources and transmission routes of MV, including human-to-human spread and involvement of natural hosts such as the Egyptian fruit bat () and other . The disease progression involves early viral replication impacting immune cells like monocytes, macrophages, and dendritic cells, followed by damage to the spleen, liver, and secondary lymphoid organs. Subsequent spread occurs to hepatocytes, endothelial cells, fibroblasts, and epithelial cells. MV can evade host immune response by inhibiting interferon type I (IFN-1) synthesis. This comprehensive investigation aims to enhance understanding of pathophysiology, cellular tropism, and injury sites in the host, aiding insights into MVD causes. Clinical data and treatments are discussed, albeit current methods to halt MVD outbreaks remain elusive. By elucidating MV infection's history and mechanisms, this review seeks to advance MV disease treatment, drug development, and vaccine creation. The World Health Organization (WHO) considers MV a high-concern filovirus causing severe and fatal hemorrhagic fever, with a death rate ranging from 24 to 88%. The virus often spreads through contact with infected individuals, originating from animals. Visitors to bat habitats like caves or mines face higher risk. We tailored this search strategy for four databases: Scopus, Web of Science, Google Scholar, and PubMed. we primarily utilized search terms such as "Marburg virus," "Epidemiology," "Vaccine," "Outbreak," and "Transmission." To enhance comprehension of the virus and associated disease, this summary offers a comprehensive overview of MV outbreaks, pathophysiology, and management strategies. Continued research and learning hold promise for preventing and controlling future MVD outbreaks. GRAPHICAL ABSTRACT.

Keywords

References

  1. Obstet Gynecol. 2014 Nov;124(5):1005-1010 [PMID: 25203368]
  2. Nat Commun. 2021 Mar 25;12(1):1891 [PMID: 33767178]
  3. PLoS Med. 2021 Oct 29;18(10):e1003813 [PMID: 34714820]
  4. N Engl J Med. 2020 Apr 2;382(14):1366-1369 [PMID: 32242365]
  5. Virus Res. 1992 Jun;24(1):1-19 [PMID: 1626422]
  6. Int J Infect Dis. 2020 Oct;99:233-242 [PMID: 32758690]
  7. J Infect Dis. 2018 Nov 22;218(suppl_5):S318-S326 [PMID: 30165666]
  8. Am J Trop Med Hyg. 2019 May;100(5):1275-1277 [PMID: 30860018]
  9. Clin Microbiol Rev. 2020 Oct 14;34(1): [PMID: 33055231]
  10. Arch Virol Suppl. 2008;20:13-360 [PMID: 18637412]
  11. Infez Med. 2020 Sep 1;28(3):332-345 [PMID: 32920568]
  12. Virology. 1998 Nov 10;251(1):28-37 [PMID: 9813200]
  13. J Virol. 2005 Nov;79(21):13421-33 [PMID: 16227263]
  14. Virulence. 2022 Dec;13(1):609-633 [PMID: 35363588]
  15. mBio. 2014 Nov 04;5(6):e02011 [PMID: 25370495]
  16. J Gen Virol. 2018 Dec;99(12):1614-1620 [PMID: 30394868]
  17. Nature. 2015 Nov 26;527(7579):453-5 [PMID: 26607539]
  18. Lancet Infect Dis. 2009 May;9(5):301-11 [PMID: 19393960]
  19. Int J Physiol Pathophysiol Pharmacol. 2021 Aug 15;13(4):102-109 [PMID: 34540130]
  20. J Clin Lab Anal. 2021 Jun;35(6):e23786 [PMID: 33939238]
  21. Dtsch Med Wochenschr. 1968 Mar 26;93(12):559-71 [PMID: 4966280]
  22. Nature. 2011 Aug 24;477(7364):340-3 [PMID: 21866103]
  23. Lancet. 1982 Apr 10;1(8276):816-20 [PMID: 6122054]
  24. PLoS Pathog. 2022 Oct 13;18(10):e1010805 [PMID: 36227853]
  25. Cell Rep. 2016 Feb 23;14(7):1632-1640 [PMID: 26876165]
  26. Ecol Evol. 2012 Aug;2(8):1826-33 [PMID: 22957185]
  27. Antiviral Res. 2018 Mar;151:39-49 [PMID: 29369776]
  28. Emerg Infect Dis. 2009 Aug;15(8):1171-5 [PMID: 19751577]
  29. Int J Health Plann Manage. 2022 Jan;37(1):553-555 [PMID: 34525245]
  30. FEMS Immunol Med Microbiol. 2004 Jan 15;40(1):27-31 [PMID: 14734183]
  31. J Infect Dis. 2011 Nov;204 Suppl 3:S927-33 [PMID: 21987771]
  32. Science. 2015 Aug 14;349(6249):739-42 [PMID: 26249231]
  33. Lancet. 2017 Feb 4;389(10068):505-518 [PMID: 28017403]
  34. Proc Natl Acad Sci U S A. 2022 Feb 8;119(6): [PMID: 35115400]
  35. J Infect Dis. 2015 Oct 1;212 Suppl 2:S146-53 [PMID: 25786917]
  36. Future Virol. 2011 Sep;6(9):1091-1106 [PMID: 22046196]
  37. Future Virol. 2007 Mar;2(2):205-215 [PMID: 24093048]
  38. Sci Transl Med. 2022 Dec 14;14(675):eabq6364 [PMID: 36516269]
  39. PLoS Pathog. 2012;8(10):e1002877 [PMID: 23055920]
  40. Cell Rep. 2014 Mar 27;6(6):1017-1025 [PMID: 24630991]
  41. Med Trop (Mars). 1999;59(2):201-4 [PMID: 10546197]
  42. J Gen Virol. 1992 Feb;73 ( Pt 2):347-57 [PMID: 1538192]
  43. J Virol. 2014 May;88(10):5859-63 [PMID: 24574400]
  44. J Virol. 1999 Mar;73(3):2333-42 [PMID: 9971816]
  45. Nature. 2017 Nov 16;551(7680):394-397 [PMID: 29144446]
  46. Nat Commun. 2017 Feb 13;8:14446 [PMID: 28194016]
  47. J Virol. 2014 Nov;88(21):12703-14 [PMID: 25142608]
  48. Virology. 1991 May;182(1):353-6 [PMID: 2024471]
  49. J Virol. 2006 Jul;80(13):6497-516 [PMID: 16775337]
  50. Hosp Pharm. 2023 Oct;58(5):420-430 [PMID: 37711410]
  51. Model Earth Syst Environ. 2022;8(1):1311-1319 [PMID: 33851007]
  52. J Appl Microbiol. 2010 Nov;109(5):1531-9 [PMID: 20553340]
  53. Virus Res. 1993 Sep;29(3):215-40 [PMID: 8237108]
  54. J Gen Virol. 2010 May;91(Pt 5):1325-34 [PMID: 20071483]
  55. J Virol. 2017 Jan 3;91(2): [PMID: 27847355]
  56. Obstet Gynecol. 2015 Jun;125(6):1293-1298 [PMID: 26000499]
  57. J Infect Dis. 2020 Nov 9;222(11):1894-1901 [PMID: 32479636]
  58. J Virol. 2004 Mar;78(5):2382-93 [PMID: 14963134]
  59. PLoS Pathog. 2009 Jul;5(7):e1000536 [PMID: 19649327]
  60. Arch Virol. 2014 Apr;159(4):821-30 [PMID: 24122154]
  61. J Gen Virol. 2016 Oct;97(10):2494-2500 [PMID: 27450090]
  62. N Engl J Med. 2006 Aug 31;355(9):909-19 [PMID: 16943403]
  63. mSphere. 2018 Jan 3;3(1): [PMID: 29299527]
  64. J Virol. 2006 Jan;80(2):1038-43 [PMID: 16379005]
  65. J Virol. 2018 Jan 17;92(3): [PMID: 29142131]
  66. Antiviral Res. 2013 Nov;100(2):446-54 [PMID: 24084488]
  67. Emerg Infect Dis. 2017 Jun;23(6):1001-1004 [PMID: 28518032]
  68. N Engl J Med. 2018 Apr 12;378(15):1440-1441 [PMID: 29641967]
  69. Int J Surg. 2023 Mar 01;109(3):597-598 [PMID: 37093097]
  70. Cell Microbiol. 2012 Feb;14(2):182-97 [PMID: 21981045]
  71. Lancet. 2020 Sep 12;396(10253):741-743 [PMID: 32861315]
  72. Clin Trials. 2022 Aug;19(4):402-406 [PMID: 35057647]
  73. Rev Med Virol. 2023 Sep;33(5):e2461 [PMID: 37208958]
  74. Front Immunol. 2019 Jan 22;9:3071 [PMID: 30723475]
  75. Int J Surg. 2023 Apr 01;109(4):1029-1031 [PMID: 36906778]
  76. Virology (Auckl). 2019 Jun 21;10:1178122X19849927 [PMID: 31258326]
  77. J Wildl Dis. 2015 Jan;51(1):113-24 [PMID: 25375951]
  78. Cell Host Microbe. 2018 Sep 12;24(3):405-416.e3 [PMID: 30173956]
  79. Virology. 1998 Sep 30;249(2):406-17 [PMID: 9791031]
  80. Viruses. 2012 Oct 01;4(10):1878-927 [PMID: 23202446]
  81. PLoS Pathog. 2022 Jul 11;18(7):e1010689 [PMID: 35816544]
  82. Virol J. 2019 Dec 30;16(1):165 [PMID: 31888676]
  83. Antiviral Res. 2018 Mar;151:97-104 [PMID: 29289666]
  84. Curr Opin Pharmacol. 2021 Oct;60:268-274 [PMID: 34482213]
  85. Trop Med Int Health. 2002 Oct;7(10):902-6 [PMID: 12358627]
  86. Lancet Infect Dis. 2012 Aug;12(8):635-42 [PMID: 22394985]
  87. Cell Rep. 2014 Mar 27;6(6):1026-1036 [PMID: 24630992]
  88. Curr Top Microbiol Immunol. 2017;411:3-21 [PMID: 28766193]
  89. PLoS One. 2012;7(12):e50948 [PMID: 23251407]
  90. PLoS Negl Trop Dis. 2022 May 27;16(5):e0010433 [PMID: 35622847]
  91. Health Promot Pract. 2015 Nov;16(6):897-905 [PMID: 26220277]
  92. J Virol. 2017 Jul 27;91(16): [PMID: 28566377]
  93. PLoS Negl Trop Dis. 2019 Mar 18;13(3):e0007257 [PMID: 30883555]
  94. PLoS Pathog. 2012 Sep;8(9):e1002916 [PMID: 23028316]
  95. Nat Rev Drug Discov. 2018 Jun;17(6):413-434 [PMID: 29375139]
  96. Sci Total Environ. 2023 Feb 1;858(Pt 3):159350 [PMID: 36265620]
  97. New Microbes New Infect. 2023 Apr 18;53:101123 [PMID: 37138784]
  98. J Pathol. 2015 Jan;235(2):153-74 [PMID: 25297522]
  99. PLoS Negl Trop Dis. 2023 Apr 26;17(4):e0011279 [PMID: 37099617]
  100. J Clin Invest. 2020 Jan 2;130(1):539-551 [PMID: 31820871]
  101. Hum Vaccin Immunother. 2015;11(8):1991-2004 [PMID: 25996997]
  102. PLoS Negl Trop Dis. 2016 Feb 29;10(2):e0004475 [PMID: 26927697]
  103. Bull Natl Res Cent. 2023;47(1):10 [PMID: 36721499]
  104. Dis Model Mech. 2009 Jan-Feb;2(1-2):12-7 [PMID: 19132113]
  105. Cureus. 2023 Jul 17;15(7):e42014 [PMID: 37593293]
  106. J Biol Chem. 2021 Jan-Jun;296:100796 [PMID: 34019871]
  107. Front Immunol. 2021 Oct 27;12:774026 [PMID: 34777392]
  108. Nat Commun. 2022 Aug 30;13(1):5108 [PMID: 36042198]
  109. Sci Rep. 2017 Jun 13;7(1):3390 [PMID: 28611428]
  110. Infect Disord Drug Targets. 2023;23(5):e280223214111 [PMID: 36852815]
  111. J Infect Dis. 2007 Nov 15;196 Suppl 2:S148-53 [PMID: 17940943]
  112. Nat Med. 2005 Jul;11(7):786-90 [PMID: 15937495]
  113. Br Med J. 1975 Nov 29;4(5995):489-93 [PMID: 811315]
  114. Curr Top Microbiol Immunol. 2017;411:381-417 [PMID: 28795188]
  115. Infect Disord Drug Targets. 2022;22(8):13-18 [PMID: 35538802]

Word Cloud

Created with Highcharts 10.0.0virusMVoutbreaksMVD"Marburgdiseasecellsratecasedependingoutbreakstrainfatality2488%managementhemorrhagicfeverreviewspreadbatimmunelikehostcomprehensiveenhancepathophysiologytreatmentvaccinefilovirusfatalsearchidentified1967causeddeadlyworldwidemortalityvariesaveragearound50%HoweverratesvariedpastDesignatedprioritypathogenNationalInstituteAllergyInfectiousDiseasesNIAIDinducesorganfailurecoagulationissueshumansnon-humanprimatespresentsextensiveexplorationevolutionstructuregenomewellsourcestransmissionroutesincludinghuman-to-humaninvolvementnaturalhostsEgyptianfruitprogressioninvolvesearlyviralreplicationimpactingmonocytesmacrophagesdendriticfolloweddamagespleenliversecondarylymphoidorgansSubsequentoccurshepatocytesendothelialfibroblastsepithelialcanevaderesponseinhibitinginterferontypeIFN-1synthesisinvestigationaimsunderstandingcellulartropisminjurysitesaidinginsightscausesClinicaldatatreatmentsdiscussedalbeitcurrentmethodshaltremainelusiveelucidatinginfection'shistorymechanismsseeksadvancedrugdevelopmentcreationWorldHealthOrganizationWHOconsidershigh-concerncausingseveredeathrangingoftenspreadscontactinfectedindividualsoriginatinganimalsVisitorshabitatscavesminesfacehigherrisktailoredstrategyfourdatabases:ScopusWebScienceGoogleScholarPubMedprimarilyutilizedterms"Marburg"Epidemiology"Vaccine"Outbreak"TransmissioncomprehensionassociatedsummaryoffersoverviewstrategiesContinuedresearchlearningholdpromisepreventingcontrollingfutureGRAPHICALABSTRACTEmergencevirus:globalperspectiveclinicalchallengesepidemicpathogenesis

Similar Articles

Cited By