Carbonyl Migration in Uronates Affords a Potential Prebiotic Pathway for Pentose Production.

Ruiqin Yi, Mike Mojica, Albert C Fahrenbach, H James Cleaves, Ramanarayanan Krishnamurthy, Charles L Liotta
Author Information
  1. Ruiqin Yi: Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. ORCID
  2. Mike Mojica: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
  3. Albert C Fahrenbach: School of Chemistry, Australian Centre for Astrobiology and the UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia. ORCID
  4. H James Cleaves: Blue Marble Space Institute of Science, Seattle, Washington 98154, United States. ORCID
  5. Ramanarayanan Krishnamurthy: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States. ORCID
  6. Charles L Liotta: School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States. ORCID

Abstract

Carbohydrate biosynthesis is fundamental to modern terrestrial biochemistry, but how this collection of metabolic pathways originated remains an open question. Prebiotic sugar synthesis has focused primarily on the formose reaction and Kiliani-Fischer homologation; however, how they can transition to extant biochemical pathways has not been studied. Herein, a nonenzymatic pathway for pentose production with similar chemical transformations as those of the pentose phosphate pathway is demonstrated. Starting from a C6 aldonate, namely, gluconate, nonselective chemical oxidation yields a mixture of 2-oxo-, 4-oxo-, 5-oxo-, and 6-oxo-uronate regioisomers. Regardless at which carbinol the oxidation takes place, carbonyl migration enables β-decarboxylation to yield pentoses. In comparison, the pentose phosphate pathway selectively oxidizes 6-phosphogluconate to afford the 3-oxo-uronate derivative, which undergoes facile subsequent β-decarboxylation and carbonyl migration to afford ribose 5-phosphate. The similarities between these two pathways and the potential implications for prebiotic chemistry and protometabolism are discussed.

References

  1. J Pharm Sci. 2016 Feb;105(2):705-713 [PMID: 26422524]
  2. Mol Syst Biol. 2014 Apr 25;10:725 [PMID: 24771084]
  3. Nat Chem. 2020 Nov;12(11):1016-1022 [PMID: 33046840]
  4. J Am Chem Soc. 2011 Jun 22;133(24):9457-68 [PMID: 21553892]
  5. Chem Rev. 2014 Jan 8;114(1):285-366 [PMID: 24171674]
  6. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):883-888 [PMID: 31888981]
  7. J Am Chem Soc. 2012 Feb 22;134(7):3577-89 [PMID: 22280414]
  8. Org Biomol Chem. 2020 Nov 7;18(41):8459-8466 [PMID: 33057544]
  9. Carbohydr Res. 2007 Feb 26;342(3-4):407-18 [PMID: 17204258]
  10. Carbohydr Res. 1991 Jan 15;209:13-31 [PMID: 1828004]
  11. Chem Biol Drug Des. 2007 Jul;70(1):30-9 [PMID: 17630992]
  12. Biochem J. 1955 Jun;60(2):271-4 [PMID: 14389236]
  13. Life (Basel). 2020 Jul 28;10(8): [PMID: 32731352]
  14. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4396-401 [PMID: 10200273]
  15. Front Bioeng Biotechnol. 2022 May 16;10:864787 [PMID: 35651548]
  16. Nat Chem. 2022 Oct;14(10):1142-1150 [PMID: 35902742]
  17. Biochemistry. 1998 Sep 8;37(36):12596-602 [PMID: 9730832]
  18. Sci Rep. 2021 Sep 29;11(1):19356 [PMID: 34588537]
  19. Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2221984120 [PMID: 36940327]
  20. Chemistry. 2018 Nov 13;24(63):16708-16715 [PMID: 29870593]
  21. Nat Chem. 2023 Oct;15(10):1470-1477 [PMID: 37443293]
  22. Biochem J. 1986 Mar 15;234(3):671-7 [PMID: 3718491]
  23. Nat Commun. 2021 Nov 16;12(1):6611 [PMID: 34785682]
  24. Life (Basel). 2022 Jan 28;12(2): [PMID: 35207486]
  25. Biophys Chem. 1985 Aug;22(3):197-204 [PMID: 3931718]
  26. J Am Chem Soc. 2014 Mar 12;136(10):3720-3 [PMID: 24575857]
  27. Chem Sci. 2022 Mar 23;13(17):4838-4853 [PMID: 35655880]
  28. Life (Basel). 2019 Nov 14;9(4): [PMID: 31739415]
  29. J Org Chem. 2006 Dec 8;71(25):9503-5 [PMID: 17137382]
  30. Annu Rev Biochem. 1955;24:207-74 [PMID: 13249356]
  31. Cryst Growth Des. 2022 Apr 6;22(4):2307-2317 [PMID: 35401055]
  32. J Bacteriol. 1957 Apr;73(4):452-60 [PMID: 13428674]
  33. Orig Life Evol Biosph. 1988;18(1-2):71-85 [PMID: 2453009]
  34. Carbohydr Res. 2004 Jun 22;339(9):1609-18 [PMID: 15183735]
  35. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13267-13274 [PMID: 32487725]
  36. Nat Chem. 2022 Feb;14(2):170-178 [PMID: 35115655]
  37. Nat Geosci. 2020 May;13(5):344-348 [PMID: 32395178]
  38. Orig Life Evol Biosph. 1995 Jun;25(1-3):83-98 [PMID: 11536683]
  39. J Mol Evol. 1999 Oct;49(4):424-31 [PMID: 10486000]
  40. Chem Rev. 2020 Aug 12;120(15):7708-7744 [PMID: 32687326]
  41. Astrobiology. 2020 Apr;20(4):429-452 [PMID: 31841362]
  42. Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):87-102 [PMID: 11296526]
  43. Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24440-24445 [PMID: 31740594]
  44. Sci Adv. 2016 Jan 15;2(1):e1501235 [PMID: 26824074]
  45. Chem Commun (Camb). 2020 Nov 14;56(88):13563-13566 [PMID: 33151212]
  46. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8158-60 [PMID: 7667262]
  47. Science. 2004 Jan 9;303(5655):196 [PMID: 14716004]
  48. Nat Chem. 2012 Nov;4(11):895-9 [PMID: 23089863]
  49. Carbohydr Res. 2010 Feb 11;345(3):377-84 [PMID: 20034621]
  50. Nature. 2001 Dec 20-27;414(6866):879-83 [PMID: 11780054]
  51. Chemistry. 2023 Feb 7;29(8):e202202816 [PMID: 36367459]
  52. Ann N Y Acad Sci. 1961 Apr 21;92:105-14 [PMID: 13684759]

Word Cloud

Created with Highcharts 10.0.0pathwayspathwaypentosePrebioticchemicalphosphateoxidationcarbonylmigrationβ-decarboxylationaffordCarbohydratebiosynthesisfundamentalmodernterrestrialbiochemistrycollectionmetabolicoriginatedremainsopenquestionsugarsynthesisfocusedprimarilyformosereactionKiliani-FischerhomologationhowevercantransitionextantbiochemicalstudiedHereinnonenzymaticproductionsimilartransformationsdemonstratedStartingC6aldonatenamelygluconatenonselectiveyieldsmixture2-oxo-4-oxo-5-oxo-6-oxo-uronateregioisomersRegardlesscarbinoltakesplaceenablesyieldpentosescomparisonselectivelyoxidizes6-phosphogluconate3-oxo-uronatederivativeundergoesfacilesubsequentribose5-phosphatesimilaritiestwopotentialimplicationsprebioticchemistryprotometabolismdiscussedCarbonylMigrationUronatesAffordsPotentialPathwayPentoseProduction

Similar Articles

Cited By