Melatonin alleviates renal injury in diabetic rats by regulating autophagy.

Na Luo, Yangyang Wang, Yonggang Ma, Yu Liu, Zongping Liu
Author Information
  1. Na Luo: Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
  2. Yangyang Wang: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
  3. Yonggang Ma: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
  4. Yu Liu: Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.
  5. Zongping Liu: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.

Abstract

Melatonin (MLT) is a biologically active indoleamine involved in regulating various biological rhythms, which is deficient in individuals with Type 2 diabetes. The present study examined the effects of MLT on diabetic neuropathy (DN). Diabetic rats received MLT treatment for 12 weeks, after which changes in kidney histology, oxidative damage, mitochondrial morphology and autophagy were measured. The glucose tolerance‑ and isoflurane tolerance‑area under the curve (AUC) values and the relative renal weight index (RI) in the diabetes mellitus (DM) group of rats were significantly higher compared with those in the control group. A significant increase in malondialdehyde (MDA) content, and decreases in the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH‑Px) and GSH were demonstrated in the kidneys of DM rats compared with those in the control rats. Histological staining of DM rat kidney tissue with hematoxylin and eosin, Masson's trichome and Periodic acid‑Schiff demonstrated glomerular and tubule lesions, and an increase in collagen compared with control rats. Protein expression levels of LC3II, P62, collagen IV (COL‑IV) and α‑SMA were increased in DM rats and HG‑induced NRK‑52E cells compared with those in the control groups. Phosphorylation of AMPK was reduced, whereas phosphorylation of PI3K, Akt and mTOR were increased and . Notably, MLT treatment significantly reduced glucose tolerance‑AUC and RI, decreased MDA content, and increased SOD, CAT, GSH‑Px and GSH activity. Glomerular and tubule lesions improved, collagen was decreased and mitochondrial damage was alleviated by MLT treatment. MLT treatment also decreased the protein expression levels of LC3II, P62 and COL‑IV, whereas the phosphorylation of AMPK was significantly increased, which inhibited the phosphorylation of PI3K, AKT and mTOR and . These results demonstrated that MLT protects against DN and NRK‑52E cell injury through inhibiting oxidative damage and regulating autophagy via the PI3K/AKT/mTOR signaling pathway.

Keywords

References

  1. Biochem Biophys Res Commun. 2021 Nov 19;579:47-53 [PMID: 34583195]
  2. Environ Toxicol. 2022 Jul;37(7):1551-1562 [PMID: 35238458]
  3. Tissue Cell. 2022 Jun;76:101763 [PMID: 35247789]
  4. J Pineal Res. 2019 Mar;66(2):e12542 [PMID: 30516280]
  5. J Pineal Res. 2012 Oct;53(3):225-37 [PMID: 22507555]
  6. World J Clin Cases. 2023 Jun 6;11(16):3736-3749 [PMID: 37383113]
  7. Front Physiol. 2022 Jan 13;12:791036 [PMID: 35095558]
  8. Exp Cell Res. 2015 Oct 1;337(2):146-59 [PMID: 25882498]
  9. Toxicology. 2022 May 15;473:153207 [PMID: 35568058]
  10. Am J Transl Res. 2014 Nov 22;6(6):631-48 [PMID: 25628776]
  11. Autophagy. 2015;11(7):1130-45 [PMID: 26039325]
  12. Cell Commun Signal. 2022 Mar 31;20(1):43 [PMID: 35361231]
  13. Int J Biochem Cell Biol. 2022 Feb;143:106153 [PMID: 34974186]
  14. Autophagy. 2011 Jan;7(1):2-11 [PMID: 20935516]
  15. Int Immunopharmacol. 2022 Nov;112:109162 [PMID: 36067654]
  16. Cell. 2011 Sep 2;146(5):682-95 [PMID: 21884931]
  17. Pharmacol Res. 2012 Dec;66(6):457-62 [PMID: 22841931]
  18. J Clin Med. 2020 Sep 10;9(9): [PMID: 32927647]
  19. Curr Med Chem. 2010;17(34):4256-69 [PMID: 20939814]
  20. FEBS J. 2015 Dec;282(24):4672-8 [PMID: 26432171]
  21. Food Funct. 2022 Mar 21;13(6):3660-3673 [PMID: 35262539]
  22. Am J Nephrol. 2010;31(4):363-74 [PMID: 20332614]
  23. J Integr Neurosci. 2022 Mar 18;21(2):46 [PMID: 35364634]
  24. Biotechnol Appl Biochem. 2022 Feb;69(1):248-264 [PMID: 33442914]
  25. Mol Cell. 2008 Apr 25;30(2):214-26 [PMID: 18439900]
  26. Curr Mol Med. 2023 Apr 17;: [PMID: 37070447]
  27. J Pineal Res. 2016 Aug;61(1):27-40 [PMID: 27112772]
  28. Cell Biol Int. 2022 Dec;46(12):2142-2157 [PMID: 36086947]
  29. Int J Mol Sci. 2019 Oct 05;20(19): [PMID: 31590394]
  30. PLoS One. 2014 Dec 16;9(12):e113459 [PMID: 25514595]
  31. Cell Death Dis. 2018 Feb 15;9(3):270 [PMID: 29449563]
  32. Arch Med Res. 2020 Aug;51(6):524-534 [PMID: 32473749]
  33. Am J Physiol Endocrinol Metab. 2015 Aug 1;309(3):E302-10 [PMID: 26081285]
  34. Eur Rev Med Pharmacol Sci. 2017 Nov;21(21):4952-4965 [PMID: 29164562]
  35. Lancet. 1998 Jul 18;352(9123):213-9 [PMID: 9683226]
  36. Am J Transl Res. 2020 May 15;12(5):1584-1599 [PMID: 32509163]
  37. J Adv Res. 2023 Apr;46:87-100 [PMID: 37003700]
  38. Brain Behav. 2023 Sep;13(9):e3118 [PMID: 37327371]
  39. Int J Mol Sci. 2020 Nov 26;21(23): [PMID: 33255983]
  40. Mol Cell Biochem. 2014 Sep;394(1-2):261-73 [PMID: 24957786]
  41. Pharmacol Res. 2015 Sep;99:237-47 [PMID: 26151815]
  42. Mol Med Rep. 2017 Nov;16(5):7715-7723 [PMID: 28944839]
  43. CNS Neurosci Ther. 2023 Oct;29(10):3068-3080 [PMID: 37170684]
  44. Antioxidants (Basel). 2023 May 25;12(6): [PMID: 37371885]
  45. PLoS One. 2016 Jan 29;11(1):e0148214 [PMID: 26824606]
  46. Nat Rev Mol Cell Biol. 2018 Feb;19(2):121-135 [PMID: 28974774]
  47. J Pineal Res. 2011 Oct;51(3):338-44 [PMID: 21615785]
  48. Exp Cell Res. 2013 Apr 1;319(6):779-89 [PMID: 23384600]
  49. Front Endocrinol (Lausanne). 2023 Mar 20;14:1139444 [PMID: 37020591]
  50. Curr Med Sci. 2023 Jun;43(3):434-444 [PMID: 37115396]
  51. Sci Rep. 2017 Jan 25;7:41337 [PMID: 28120943]
  52. Int Immunopharmacol. 2022 Jun;107:108711 [PMID: 35338958]
  53. Int J Clin Exp Pathol. 2018 May 01;11(5):2488-2496 [PMID: 31938361]

MeSH Term

Rats
Animals
Melatonin
Diabetes Mellitus, Experimental
Diabetes Mellitus, Type 2
Proto-Oncogene Proteins c-akt
Phosphatidylinositol 3-Kinases
AMP-Activated Protein Kinases
Kidney
Kidney Diseases
Oxidative Stress
TOR Serine-Threonine Kinases
Glutathione Peroxidase
Autophagy
Glucose
Superoxide Dismutase

Chemicals

Melatonin
Proto-Oncogene Proteins c-akt
Phosphatidylinositol 3-Kinases
AMP-Activated Protein Kinases
TOR Serine-Threonine Kinases
Glutathione Peroxidase
Glucose
Superoxide Dismutase

Word Cloud

Created with Highcharts 10.0.0MLTratstreatmentautophagyDMcomparedcontrolincreasedregulatingdiabeteskidneydamagesignificantlydemonstratedcollagenphosphorylationdecreasedinjuryMelatonindiabeticDNoxidativemitochondrialglucoserenalRImellitusgroupincreaseMDAcontentactivitySODCATGSH‑PxGSHtubulelesionsexpressionlevelsLC3IIP62COL‑IVNRK‑52EAMPKreducedwhereasPI3KmTORbiologicallyactiveindoleamineinvolvedvariousbiologicalrhythmsdeficientindividualsType2presentstudyexaminedeffectsneuropathyDiabeticreceived12 weekschangeshistologymorphologymeasuredtolerance‑isofluranetolerance‑areacurveAUCvaluesrelativeweightindexhighersignificantmalondialdehydedecreasessuperoxidedismutasecatalaseglutathioneperoxidasekidneysHistologicalstainingrattissuehematoxylineosinMasson'strichomePeriodicacid‑SchiffglomerularProteinIVα‑SMAHG‑inducedcellsgroupsPhosphorylationAktNotablytolerance‑AUCGlomerularimprovedalleviatedalsoproteininhibitedAKTresultsprotectscellinhibitingviaPI3K/AKT/mTORsignalingpathwayalleviatesmelatonin

Similar Articles

Cited By