Plankton and marine aggregates as transmission vectors for V. aestuarianus 02/041 infecting the pacific oyster Crassostrea gigas.

Lapo Doni, Giovanni Tassistro, Caterina Oliveri, Teresa Balbi, Manon Auguste, Alberto Pallavicini, Laura Canesi, Carla Pruzzo, Luigi Vezzulli
Author Information
  1. Lapo Doni: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  2. Giovanni Tassistro: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  3. Caterina Oliveri: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  4. Teresa Balbi: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  5. Manon Auguste: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  6. Alberto Pallavicini: Department of Life Sciences, University of Trieste, Trieste, Italy.
  7. Laura Canesi: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  8. Carla Pruzzo: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
  9. Luigi Vezzulli: Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy. ORCID

Abstract

Vibrio aestuarianus is a bacterium related to mass mortality outbreaks of the Pacific oyster, Crassostrea gigas in Europe. In this study, the role of different planktonic substrates (phytoplankton cells, marine aggregates and chitin fragments) in mediating V. aestuarianus 02/041 infection of oysters was evaluated by controlled infection experiments. It was shown that phytoplankton cells and, to a greater extent, marine aggregates, significantly promote V. aestuarianus 02/041 intake by C. gigas maintained under stressful conditions in the laboratory. Such intake is associated with higher concentration of the pathogen in the bivalve hemolymph and compromised health status of infected oysters. In contrast, chitin particles do not play a significant role as transmission vector for V. aestuarianus 02/041 infecting its bivalve host. Interestingly, incorporation into marine aggregates foster extracellular proteases (ECPs) activity and a higher expression of bacterial virulence genes, that are potentially involved in bivalve infection. Results from this study contribute to elucidate transmission patterns of V. aestuarianus 02/041 to C. gigas that may be useful for the development of efficient measures to prevent and control oyster disease outbreaks.

References

  1. Dis Aquat Organ. 2010 Sep 17;91(3):213-21 [PMID: 21133321]
  2. Curr Opin Biotechnol. 2008 Jun;19(3):254-9 [PMID: 18501582]
  3. Environ Microbiol. 2015 Nov;17(11):4271-9 [PMID: 25655520]
  4. Ecol Evol. 2016 Sep 24;6(20):7397-7408 [PMID: 28725407]
  5. Fish Shellfish Immunol. 2013 Dec;35(6):1906-15 [PMID: 24080469]
  6. Environ Microbiol. 2015 Nov;17(11):4189-99 [PMID: 25384557]
  7. Appl Environ Microbiol. 2005 Aug;71(8):4645-54 [PMID: 16085859]
  8. Environ Microbiol. 2020 Oct;22(10):4323-4341 [PMID: 32363732]
  9. Microbiologyopen. 2018 Jun;7(3):e00568 [PMID: 29314726]
  10. Vet Res. 2017 May 26;48(1):32 [PMID: 28549482]
  11. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  12. Environ Microbiol. 2015 Apr;17(4):1065-80 [PMID: 24725454]
  13. Mar Environ Res. 2019 Jan;143:124-140 [PMID: 30482397]
  14. Environ Microbiol Rep. 2023 Dec;15(6):631-641 [PMID: 37776112]
  15. Fish Shellfish Immunol. 2010 Nov;29(5):753-8 [PMID: 20624467]
  16. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  17. Environ Microbiol. 2008 Jun;10(6):1400-10 [PMID: 18312392]
  18. Mar Environ Res. 2009 Sep;68(3):137-42 [PMID: 19525006]
  19. Appl Environ Microbiol. 2013 Mar;79(5):1454-8 [PMID: 23263962]
  20. J Invertebr Pathol. 2015 Oct;131:11-31 [PMID: 26210496]
  21. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Front Vet Sci. 2019 May 14;6:142 [PMID: 31139636]
  24. Curr Opin Biotechnol. 2023 Apr;80:102894 [PMID: 36680847]
  25. Environ Microbiol Rep. 2012 Aug;4(4):439-45 [PMID: 23760830]
  26. PLoS One. 2015 Apr 27;10(4):e0123983 [PMID: 25915771]
  27. Fish Shellfish Immunol. 2011 Feb;30(2):691-9 [PMID: 21195769]
  28. J Invertebr Pathol. 2014 Sep;121:78-84 [PMID: 25016160]
  29. Environ Microbiol Rep. 2010 Feb;2(1):27-33 [PMID: 23765995]
  30. Appl Environ Microbiol. 2004 Jul;70(7):4103-10 [PMID: 15240289]
  31. Environ Microbiol. 2018 Dec;20(12):4343-4355 [PMID: 29974612]
  32. Front Microbiol. 2014 Apr 23;5:135 [PMID: 24795701]
  33. Comp Biochem Physiol B Biochem Mol Biol. 2000 Mar;125(3):359-69 [PMID: 10818269]
  34. J Microbiol Methods. 2009 May;77(2):191-7 [PMID: 19318049]

Grants

  1. 678589/Horizon 2020 Framework Programme

MeSH Term

Animals
Crassostrea
Plankton
Vibrio
Europe
Hemolymph
Chitin

Chemicals

Chitin

Word Cloud

Created with Highcharts 10.0.0aestuarianusV02/041gigasmarineaggregatesoysterinfectionbivalvetransmissionoutbreaksCrassostreastudyrolephytoplanktoncellschitinoystersintakeChigherinfectingVibriobacteriumrelatedmassmortalityPacificEuropedifferentplanktonicsubstratesfragmentsmediatingevaluatedcontrolledexperimentsshowngreaterextentsignificantlypromotemaintainedstressfulconditionslaboratoryassociatedconcentrationpathogenhemolymphcompromisedhealthstatusinfectedcontrastparticlesplaysignificantvectorhostInterestinglyincorporationfosterextracellularproteasesECPsactivityexpressionbacterialvirulencegenespotentiallyinvolvedResultscontributeelucidatepatternsmayusefuldevelopmentefficientmeasurespreventcontroldiseasePlanktonvectorspacific

Similar Articles

Cited By