Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery.

Shruti Singh, Rajesh Kumar, Shuvasree Payra, Sunil K Singh
Author Information
  1. Shruti Singh: Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND.
  2. Rajesh Kumar: Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND.
  3. Shuvasree Payra: Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND.
  4. Sunil K Singh: Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND.

Abstract

Artificial intelligence (AI) has transformed pharmacological research through machine learning, deep learning, and natural language processing. These advancements have greatly influenced drug discovery, development, and precision medicine. AI algorithms analyze vast biomedical data identifying potential drug targets, predicting efficacy, and optimizing lead compounds. AI has diverse applications in pharmacological research, including target identification, drug repurposing, virtual screening, de novo drug design, toxicity prediction, and personalized medicine. AI improves patient selection, trial design, and real-time data analysis in clinical trials, leading to enhanced safety and efficacy outcomes. Post-marketing surveillance utilizes AI-based systems to monitor adverse events, detect drug interactions, and support pharmacovigilance efforts. Machine learning models extract patterns from complex datasets, enabling accurate predictions and informed decision-making, thus accelerating drug discovery. Deep learning, specifically convolutional neural networks (CNN), excels in image analysis, aiding biomarker identification and optimizing drug formulation. Natural language processing facilitates the mining and analysis of scientific literature, unlocking valuable insights and information. However, the adoption of AI in pharmacological research raises ethical considerations. Ensuring data privacy and security, addressing algorithm bias and transparency, obtaining informed consent, and maintaining human oversight in decision-making are crucial ethical concerns. The responsible deployment of AI necessitates robust frameworks and regulations. The future of AI in pharmacological research is promising, with integration with emerging technologies like genomics, proteomics, and metabolomics offering the potential for personalized medicine and targeted therapies. Collaboration among academia, industry, and regulatory bodies is essential for the ethical implementation of AI in drug discovery and development. Continuous research and development in AI techniques and comprehensive training programs will empower scientists and healthcare professionals to fully exploit AI's potential, leading to improved patient outcomes and innovative pharmacological interventions.

Keywords

References

  1. Mol Syst Biol. 2011 Jun 07;7:496 [PMID: 21654673]
  2. J Pharm Sci. 2021 Apr;110(4):1583-1591 [PMID: 33346034]
  3. Methods Mol Biol. 2016;1415:441-62 [PMID: 27115647]
  4. BMC Syst Biol. 2013;7 Suppl 5:S6 [PMID: 24564976]
  5. Front Chem. 2020 Sep 11;8:726 [PMID: 33062633]
  6. Chem Res Toxicol. 2015 Jan 20;28(1):116-25 [PMID: 25495542]
  7. J Law Biosci. 2019 Sep 16;6(1):317-335 [PMID: 31666972]
  8. Int J Environ Res Public Health. 2022 Jul 23;19(15): [PMID: 35897349]
  9. BMC Med Inform Decis Mak. 2019 Dec 21;19(1):281 [PMID: 31864346]
  10. Expert Opin Drug Metab Toxicol. 2015 Feb;11(2):259-71 [PMID: 25440524]
  11. Signal Transduct Target Ther. 2022 May 10;7(1):156 [PMID: 35538061]
  12. Artif Intell Rev. 2022;55(3):1947-1999 [PMID: 34393317]
  13. Expert Opin Drug Discov. 2021 Sep;16(9):949-959 [PMID: 33779453]
  14. J Chem Inf Model. 2021 Nov 22;61(11):5343-5361 [PMID: 34699719]
  15. Sci Rep. 2023 Mar 3;13(1):3594 [PMID: 36869062]
  16. Cancer Treat Res. 2019;178:265-283 [PMID: 31209850]
  17. Pharmaceutics. 2023 Apr 17;15(4): [PMID: 37111744]
  18. Molecules. 2018 Aug 31;23(9): [PMID: 30200333]
  19. Nat Commun. 2022 Apr 1;13(1):1728 [PMID: 35365602]
  20. Lancet Digit Health. 2022 Feb;4(2):e137-e148 [PMID: 34836823]
  21. Nat Rev Drug Discov. 2019 Jun;18(6):463-477 [PMID: 30976107]
  22. Sci Rep. 2020 Jun 10;10(1):9377 [PMID: 32523056]
  23. J Biomed Inform. 2019 May;93:103159 [PMID: 30926470]
  24. Drug Discov Today. 2021 Jan;26(1):80-93 [PMID: 33099022]
  25. Biophys Rev. 2019 Feb;11(1):31-39 [PMID: 30097794]
  26. Expert Opin Drug Saf. 2023 Jul-Dec;22(8):659-668 [PMID: 37339273]
  27. BMC Med Ethics. 2021 Sep 15;22(1):122 [PMID: 34525993]
  28. NPJ Syst Biol Appl. 2021 Oct 27;7(1):40 [PMID: 34707117]
  29. Nat Med. 2020 Sep;26(9):1351-1363 [PMID: 32908284]
  30. J Chem Inf Model. 2019 Nov 25;59(11):4587-4601 [PMID: 31644282]
  31. Clin Transl Sci. 2021 Jan;14(1):86-93 [PMID: 32961010]
  32. AAPS J. 2022 Jan 4;24(1):19 [PMID: 34984579]
  33. Nature. 2019 Jul;571(7765):332-333 [PMID: 31316192]
  34. Methods. 2018 Aug 1;145:51-59 [PMID: 29879508]
  35. Innov Pharm. 2022 Dec 12;13(2): [PMID: 36654703]
  36. Front Bioinform. 2022 Jun 27;2:927312 [PMID: 36304293]
  37. Front Pharmacol. 2023 May 22;14:1205144 [PMID: 37284317]
  38. Trends Pharmacol Sci. 2019 Aug;40(8):577-591 [PMID: 31326235]
  39. J Cheminform. 2013 Jun 22;5(1):30 [PMID: 23800010]
  40. Drug Saf. 2021 Feb;44(2):125-132 [PMID: 33026641]
  41. Trends Pharmacol Sci. 2005 Apr;26(4):202-9 [PMID: 15808345]
  42. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  43. Sensors (Basel). 2021 Oct 23;21(21): [PMID: 34770336]
  44. Comb Chem High Throughput Screen. 2022;25(11):1818-1837 [PMID: 34875986]
  45. Eur Radiol Exp. 2018 Oct 24;2(1):35 [PMID: 30353365]
  46. Curr Med Chem. 2011;18(36):5687-93 [PMID: 22172073]
  47. Int J Pharm X. 2020 Nov 11;2:100058 [PMID: 33294841]
  48. J Biomol Struct Dyn. 2020 Jul;38(11):3280-3295 [PMID: 31411124]
  49. Nat Protoc. 2022 Mar;17(3):672-697 [PMID: 35121854]
  50. Nat Commun. 2022 Nov 12;13(1):6891 [PMID: 36371441]
  51. Mini Rev Med Chem. 2021;21(18):2788-2800 [PMID: 33797376]
  52. Clin Transl Sci. 2023 Jan;16(1):31-36 [PMID: 36181380]
  53. J Chem Inf Model. 2019 Mar 25;59(3):1205-1214 [PMID: 30762364]
  54. Front Pharmacol. 2022 May 10;13:872785 [PMID: 35620297]
  55. J Cheminform. 2019 Jan 5;11(1):2 [PMID: 30612223]
  56. J Comput Aided Mol Des. 2022 May;36(5):355-362 [PMID: 35304657]
  57. Pharmaceut Med. 2022 Oct;36(5):295-306 [PMID: 35904529]
  58. NPJ Precis Oncol. 2020 Jun 15;4:19 [PMID: 32566759]
  59. Front Genet. 2022 Jun 13;13:929453 [PMID: 35769991]
  60. Drug Saf. 2019 Apr;42(4):491-497 [PMID: 30343417]
  61. Epilepsy Curr. 2021 Oct 15;22(2):111-113 [PMID: 35444508]
  62. Nat Med. 2020 Sep;26(9):1364-1374 [PMID: 32908283]
  63. Mol Divers. 2021 Aug;25(3):1315-1360 [PMID: 33844136]
  64. Biotechnol Bioprocess Eng. 2020;25(6):895-930 [PMID: 33437151]
  65. Front Pharmacol. 2021 Sep 30;12:720694 [PMID: 34658859]
  66. ACS Omega. 2021 Nov 29;6(49):33293-33299 [PMID: 34926881]
  67. Pharmaceutics. 2022 Sep 21;14(10): [PMID: 36297432]
  68. Front Genet. 2021 May 03;12:666575 [PMID: 34012464]
  69. Clin Pharmacol Ther. 2021 May;109(5):1197-1202 [PMID: 33492663]
  70. Aging (Albany NY). 2017 Jul 18;9(7):1721-1737 [PMID: 28783712]

Word Cloud

Created with Highcharts 10.0.0AIdrugpharmacologicalresearchlearningdiscoverymedicinedevelopmentdatapotentialpersonalizedanalysisethicalArtificialintelligencemachinelanguageprocessingefficacyoptimizingidentificationdesignpatientleadingoutcomesMachineinformeddecision-makingneuralnetworkstransformeddeepnaturaladvancementsgreatlyinfluencedprecisionalgorithmsanalyzevastbiomedicalidentifyingtargetspredictingleadcompoundsdiverseapplicationsincludingtargetrepurposingvirtualscreeningdenovotoxicitypredictionimprovesselectiontrialreal-timeclinicaltrialsenhancedsafetyPost-marketingsurveillanceutilizesAI-basedsystemsmonitoradverseeventsdetectinteractionssupportpharmacovigilanceeffortsmodelsextractpatternscomplexdatasetsenablingaccuratepredictionsthusacceleratingDeepspecificallyconvolutionalCNNexcelsimageaidingbiomarkerformulationNaturalfacilitatesminingscientificliteratureunlockingvaluableinsightsinformationHoweveradoptionraisesconsiderationsEnsuringprivacysecurityaddressingalgorithmbiastransparencyobtainingconsentmaintaininghumanoversightcrucialconcernsresponsibledeploymentnecessitatesrobustframeworksregulationsfuturepromisingintegrationemergingtechnologieslikegenomicsproteomicsmetabolomicsofferingtargetedtherapiesCollaborationamongacademiaindustryregulatorybodiesessentialimplementationContinuoustechniquescomprehensivetrainingprogramswillempowerscientistshealthcareprofessionalsfullyexploitAI'simprovedinnovativeinterventionsIntelligenceLearningPharmacologicalResearch:BridgingGapDataDrugDiscoveryaiethicsartificialconvoluted

Similar Articles

Cited By