Adherence to e-health interventions for substance use and the factors influencing it: Systematic Review, meta-analysis, and meta-regression.

Farhud Shams, Andy M Y Tai, Jane Kim, Marisha Boyd, Maximilian Meyer, Alireza Kazemi, Reinhard Michael Krausz
Author Information
  1. Farhud Shams: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
  2. Andy M Y Tai: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. ORCID
  3. Jane Kim: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
  4. Marisha Boyd: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
  5. Maximilian Meyer: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
  6. Alireza Kazemi: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
  7. Reinhard Michael Krausz: Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.

Abstract

Background: Substance use disorders affect 36 million people globally, but only a small proportion of them receive the necessary treatment. E-health interventions have been developed to address this issue by improving access to substance use treatment. However, concerns about participant engagement and adherence to these interventions remain. This review aimed to evaluate adherence to e-health interventions targeting substance use and identify hypothesized predictors of adherence.
Methods: A systematic review of literature published between 2009 and 2020 was conducted, and data on adherence measures and hypothesized predictors were extracted. Meta-analysis and meta-regression were used to analyze the data. The two adherence measures were (a) the mean proportion of modules completed across the intervention groups and (b) the proportion of participants that completed all modules. Four meta-regression models assessed each covariate including guidance, blended treatment, intervention duration and recruitment strategy.
Results: The overall pooled adherence rate was 0.60 (95%-CI: 0.52-0.67) for the mean proportion of modules completed across 30 intervention arms and 0.47 (95%-CI: 0.35-0.59) for the proportion of participants that completed all modules across 9 intervention arms. Guidance, blended treatment, and recruitment were significant predictors of adherence, while treatment duration was not.
Conclusion: The study suggests that more research is needed to identify predictors of adherence, in order to determine specific aspects that contribute to better exposure to intervention content. Reporting adherence and predictors in future studies can lead to improved meta-analyses and the development of more engaging interventions. Identifying predictors can aid in designing effective interventions for substance use disorders, with important implications for e-health interventions targeting substance use.

Keywords

References

  1. J Stud Alcohol Drugs. 2009 Jul;70(4):516-27 [PMID: 19515291]
  2. Trials. 2016 Aug 03;17(1):387 [PMID: 27488181]
  3. Addict Behav. 2016 Jul;58:129-35 [PMID: 26925821]
  4. Int J Behav Med. 2016 Dec;23(6):776-794 [PMID: 26957109]
  5. Psychol Med. 2007 Sep;37(9):1217-28 [PMID: 17306044]
  6. Scand J Work Environ Health. 2016 Sep 1;42(5):382-94 [PMID: 27249161]
  7. Int J Behav Med. 2017 Oct;24(5):749-759 [PMID: 27900733]
  8. J Med Internet Res. 2012 Nov 14;14(6):e152 [PMID: 23151820]
  9. Stat Med. 2001 Mar 30;20(6):825-40 [PMID: 11252006]
  10. Am J Psychiatry. 2014 Apr;171(4):436-44 [PMID: 24577287]
  11. Cochrane Database Syst Rev. 2017 Sep 04;9:CD007078 [PMID: 28869775]
  12. Am J Psychiatry. 2008 Feb;165(2):179-87 [PMID: 18198270]
  13. Can J Psychiatry. 2018 Apr;63(4):216-222 [PMID: 29528719]
  14. BMC Public Health. 2019 May 24;19(1):636 [PMID: 31126260]
  15. J Affect Disord. 2018 Feb;227:455-462 [PMID: 29154168]
  16. J Med Internet Res. 2009 Apr 24;11(2):e13 [PMID: 19403466]
  17. PLoS Med. 2018 Dec 18;15(12):e1002714 [PMID: 30562347]
  18. Addiction. 2021 May;116(5):1088-1100 [PMID: 32969541]
  19. Am J Psychiatry. 2018 Sep 1;175(9):853-863 [PMID: 29792052]
  20. Sleep Med. 2020 May;69:19-33 [PMID: 32045851]
  21. Alcohol Clin Exp Res. 2016 Sep;40(9):1991-2000 [PMID: 27488212]
  22. Subst Abus. 2019;40(2):132-135 [PMID: 30714880]
  23. Drug Alcohol Depend. 2011 May 1;115(1-2):74-9 [PMID: 21131143]
  24. Am J Public Health. 2018 Nov;108(11):1535-1542 [PMID: 30252519]
  25. J Exp Criminol. 2014;10:105-127 [PMID: 24634641]
  26. J Med Internet Res. 2015 Oct 13;17(10):e232 [PMID: 26462848]
  27. Stat Med. 2002 Jun 15;21(11):1559-73 [PMID: 12111920]
  28. PLoS One. 2014 Jun 17;9(6):e99912 [PMID: 24937483]
  29. J Subst Abuse Treat. 2010 Oct;39(3):227-35 [PMID: 20667682]
  30. J Med Internet Res. 2022 Jun 15;24(6):e36004 [PMID: 35511463]
  31. Addiction. 2006 Feb;101(2):192-203 [PMID: 16445548]
  32. J Clin Psychiatry. 2018 Jan/Feb;79(1): [PMID: 29286595]
  33. J Med Internet Res. 2012 Nov 28;14(6):e166 [PMID: 23192752]
  34. Am J Psychiatry. 2014 Jun;171(6):683-90 [PMID: 24700332]
  35. Psychother Psychosom. 2017;86(6):341-350 [PMID: 29131090]
  36. Behav Ther. 2017 Mar;48(2):262-276 [PMID: 28270335]
  37. J Med Internet Res. 2016 May 24;18(5):e103 [PMID: 27220276]
  38. Clin Psychol Rev. 2008 Jul;28(6):952-62 [PMID: 18374464]
  39. J Med Internet Res. 2011 Aug 05;13(3):e52 [PMID: 21821503]
  40. J Med Internet Res. 2013 Dec 10;15(12):e280 [PMID: 24326065]
  41. J Med Internet Res. 2005 Mar 31;7(1):e11 [PMID: 15829473]
  42. J Med Internet Res. 2011 Mar 10;13(1):e30 [PMID: 21393123]
  43. Addiction. 2017 Sep;112(9):1521-1532 [PMID: 28295758]
  44. J Med Internet Res. 2007 Apr 27;9(2):e7 [PMID: 17478409]
  45. J Med Internet Res. 2016 Mar 23;18(3):e71 [PMID: 27009465]
  46. Addiction. 2009 Mar;104(3):378-88 [PMID: 19207345]
  47. J Subst Abuse Treat. 2014 Jan;46(1):43-51 [PMID: 24060350]
  48. J Med Internet Res. 2016 Jun 29;18(6):e146 [PMID: 27357528]
  49. J Med Internet Res. 2021 Jan 21;23(1):e20557 [PMID: 33475520]
  50. Drug Alcohol Depend. 2013 Dec 1;133(2):295-304 [PMID: 23747236]
  51. JMIR Mhealth Uhealth. 2017 Jul 20;5(7):e94 [PMID: 28729235]
  52. Drug Alcohol Depend. 2004 Apr 9;74(1):1-13 [PMID: 15072802]
  53. Internet Interv. 2019 May 22;17:100251 [PMID: 31193584]
  54. Eur J Public Health. 2021 Jul 7;31(31 Suppl 1):i3-i10 [PMID: 32918448]
  55. Psychiatr Serv. 2014 Jan 1;65(1):24-32 [PMID: 24081188]
  56. Am J Psychiatry. 2008 Jul;165(7):881-8 [PMID: 18450927]
  57. Subst Use Misuse. 2018 Nov 10;53(13):2220-2231 [PMID: 29768070]
  58. J Affect Disord. 2018 Mar 15;229:443-449 [PMID: 29331706]
  59. Annu Rev Public Health. 2009;30:273-92 [PMID: 19296777]
  60. J Subst Abuse Treat. 2012 Jan;42(1):25-34 [PMID: 21862275]
  61. Stat Med. 2003 Sep 15;22(17):2693-710 [PMID: 12939780]
  62. Stat Med. 2004 Jun 15;23(11):1663-82 [PMID: 15160401]
  63. Sleep Med Rev. 2013 Dec;17(6):453-64 [PMID: 23602124]
  64. J Subst Abuse Treat. 2020 Apr;111:37-46 [PMID: 32087837]
  65. Internet Interv. 2017 Aug 23;12:91-99 [PMID: 30135773]
  66. Addiction. 2020 May;115(5):863-874 [PMID: 31691413]
  67. Cochrane Database Syst Rev. 2011 May 11;(5):CD008063 [PMID: 21563163]
  68. Psychol Med. 2007 Mar;37(3):319-28 [PMID: 17112400]

Word Cloud

Created with Highcharts 10.0.0adherenceinterventionsusesubstancepredictorsproportiontreatmentinterventionmodulescompleted0reviewe-healthmeta-regressionacrossdisorderstargetingidentifyhypothesizedsystematicdatameasuresmeanparticipantsblendeddurationrecruitment95%-CI:armscanBackground:Substanceaffect36millionpeoplegloballysmallreceivenecessaryE-healthdevelopedaddressissueimprovingaccessHoweverconcernsparticipantengagementremainaimedevaluateMethods:literaturepublished20092020conductedextractedMeta-analysisusedanalyzetwogroupsbFourmodelsassessedcovariateincludingguidancestrategyResults:overallpooledrate6052-067304735-0599GuidancesignificantnotConclusion:studysuggestsresearchneededorderdeterminespecificaspectscontributebetterexposurecontentReportingfuturestudiesleadimprovedmeta-analysesdevelopmentengagingIdentifyingaiddesigningeffectiveimportantimplicationsAdherencefactorsinfluencingit:SystematicReviewmeta-analysise-Healthmeta-Analysismeta-Regressiondisorder

Similar Articles

Cited By