Effect of free and bound polyphenols from Tratt distiller's grains on moderating fecal microbiota.

Die Zhou, Jiang Zhong, Yongguang Huang, Yuxin Cheng
Author Information
  1. Die Zhou: College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China.
  2. Jiang Zhong: College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China.
  3. Yongguang Huang: College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China.
  4. Yuxin Cheng: College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China.

Abstract

Tratt distiller's grains ( DGs), the main by-product of wine processing, showed functional value and potential for high-value usage which benefited from their rich polyphenols. In this study, the free and bound polyphenols from DGs were extracted and their potential effect on modulating fecal microbiota was investigated using fecal fermentation. The free polyphenols (26.32-26.45 mg GAE/g) showed higher antioxidant activity compared to the bound polyphenols (8.76-9.01 mg GAE/g). The free and bound polyphenols significantly improved the fecal microbiota community structure and enhanced short chain fatty acids concentrations after the stimulated colonic fermentation for 24 h. Furthermore, the effect of DGs polyphenols on modulating fecal microbiota was primarily attributed to quercetin, catechin, kaempferol, cyanidin and baicalin. This research suggests that DGs are a promising source of natural antioxidants and prebiotic foods.

Keywords

References

  1. Molecules. 2016 Sep 09;21(9): [PMID: 27618004]
  2. Foods. 2022 Jun 14;11(12): [PMID: 35741945]
  3. Food Funct. 2020 Sep 23;11(9):8003-8013 [PMID: 32845255]
  4. Br J Nutr. 2018 Jun;119(12):1393-1399 [PMID: 29845904]
  5. Crit Rev Biotechnol. 2020 Aug;40(5):689-714 [PMID: 32338083]
  6. Front Nutr. 2022 Jun 28;9:922496 [PMID: 35836591]
  7. J Ethnopharmacol. 2022 Jan 30;283:114749 [PMID: 34666140]
  8. Anim Nutr. 2022 Jul 14;11:48-59 [PMID: 36091258]
  9. Foods. 2022 Mar 17;11(6): [PMID: 35327272]
  10. Cell. 2016 Jun 2;165(6):1332-1345 [PMID: 27259147]
  11. Molecules. 2021 May 16;26(10): [PMID: 34065743]
  12. Food Chem Toxicol. 2019 Nov;133:110787 [PMID: 31449895]
  13. Mol Nutr Food Res. 2013 May;57(5):833-9 [PMID: 23589502]
  14. Food Res Int. 2021 Apr;142:110189 [PMID: 33773665]
  15. Food Chem. 2014 Feb 15;145:220-7 [PMID: 24128471]
  16. Food Funct. 2021 Aug 2;12(15):6889-6899 [PMID: 34338265]
  17. Food Chem. 2019 Oct 15;295:289-299 [PMID: 31174761]
  18. Food Chem. 2022 Jan 1;366:130509 [PMID: 34339923]
  19. J Sci Food Agric. 2017 Aug;97(10):3433-3444 [PMID: 28026017]
  20. Foods. 2022 Jun 01;11(11): [PMID: 35681389]
  21. Nat Rev Microbiol. 2021 Jan;19(1):55-71 [PMID: 32887946]
  22. Food Funct. 2021 Mar 21;12(6):2442-2456 [PMID: 33629093]
  23. Food Chem. 2023 Mar 15;404(Pt B):134644 [PMID: 36323016]
  24. Food Chem. 2022 May 30;377:131922 [PMID: 34979396]
  25. J Nutr. 2018 Feb 1;148(2):209-219 [PMID: 29490092]
  26. Nat Rev Immunol. 2013 May;13(5):321-35 [PMID: 23618829]
  27. Front Immunol. 2020 Sep 16;11:580208 [PMID: 33042163]
  28. Food Technol Biotechnol. 2017 Mar;55(1):109-116 [PMID: 28559739]
  29. Food Sci Biotechnol. 2016 Aug 31;25(4):971-977 [PMID: 30263362]
  30. J AOAC Int. 2012 Jan-Feb;95(1):50-60 [PMID: 22468341]
  31. Food Chem. 2018 Oct 1;262:184-190 [PMID: 29751907]
  32. Food Funct. 2022 Aug 30;13(17):8880-8891 [PMID: 35924964]
  33. J Biosci. 2019 Oct;44(5): [PMID: 31719226]

Word Cloud

Created with Highcharts 10.0.0polyphenolsfecalmicrobiotaDGsfreeboundTrattgrainsdistiller'sshowedpotentialeffectmodulatingfermentationactivitychainfattyacidsmainby-productwineprocessingfunctionalvaluehigh-valueusagebenefitedrichstudyextractedinvestigatedusing2632-2645 mg GAE/ghigherantioxidantcompared876-901 mg GAE/gsignificantlyimprovedcommunitystructureenhancedshortconcentrationsstimulatedcolonic24 hFurthermoreprimarilyattributedquercetincatechinkaempferolcyanidinbaicalinresearchsuggestspromisingsourcenaturalantioxidantsprebioticfoodsEffectmoderatingAntioxidantFecalPolyphenolsRosaroxburghiidistiller’sShort

Similar Articles

Cited By (3)