Effect of yeast biomass with increased kynurenic acid content on selected metabolic indicators in mice.

Magdalena Matusiewicz, Magdalena Wr��bel-Kwiatkowska, Tomasz Niemiec, Wies��aw ��widerek, Iwona Kosieradzka, Aleksandra Rosi��ska, Anna Niwi��ska, Magdalena Rakicka-Pustu��ka, Tomasz Kocki, Waldemar Rymowicz, Waldemar A Turski
Author Information
  1. Magdalena Matusiewicz: Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
  2. Magdalena Wr��bel-Kwiatkowska: Department of Biotechnology and Food Microbiology, Wroc��aw University of Environmental and Life Sciences, Wroc��aw, Poland.
  3. Tomasz Niemiec: Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland.
  4. Wies��aw ��widerek: Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland.
  5. Iwona Kosieradzka: Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland.
  6. Aleksandra Rosi��ska: Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
  7. Anna Niwi��ska: Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.
  8. Magdalena Rakicka-Pustu��ka: Department of Biotechnology and Food Microbiology, Wroc��aw University of Environmental and Life Sciences, Wroc��aw, Poland.
  9. Tomasz Kocki: Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland.
  10. Waldemar Rymowicz: Department of Biotechnology and Food Microbiology, Wroc��aw University of Environmental and Life Sciences, Wroc��aw, Poland.
  11. Waldemar A Turski: Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland.

Abstract

Background: The unconventional yeast species is a valuable source of protein and many other nutrients. It can be used to produce hydrolytic enzymes and metabolites, including kynurenic acid (KYNA), an endogenous metabolite of tryptophan with a multidirectional effect on the body. The administration of with an increased content of KYNA in the diet may have a beneficial effect on metabolism, which was evaluated in a nutritional experiment on mice.
Methods: In the dry biomass of S12 enriched in KYNA (high-KYNA yeast) and low-KYNA (control) yeast, the content of KYNA was determined by high-performance liquid chromatography. Then, proximate and amino acid composition and selected indicators of antioxidant status were compared. The effect of 5% high-KYNA yeast content in the diet on the growth, hematological and biochemical indices of blood and the redox status of the liver was determined in a 7-week experiment on adult male mice from an outbred colony derived from A/St, BALB/c, BN/a and C57BL/6J inbred strains.
Results: High-KYNA yeast was characterized by a greater concentration of KYNA than low-KYNA yeast (0.80 �� 0.08 . 0.29 �� 0.01 g/kg dry matter), lower content of crude protein with a less favorable amino acid composition and minerals, higher level of crude fiber and fat and lower ferric-reducing antioxidant power, concentration of phenols and glutathione. Consumption of the high-KYNA yeast diet did not affect the cumulative body weight gain per cage, cumulative food intake per cage and protein efficiency ratio compared to the control diet. A trend towards lower mean corpuscular volume and hematocrit, higher mean corpuscular hemoglobin concentration and lower serum total protein and globulins was observed, increased serum total cholesterol and urea were noted. Its ingestion resulted in a trend towards greater ferric-reducing antioxidant power in the liver and did not affect the degree of liver lipid and protein oxidation.
Conclusions: The improvement of the quality of yeast biomass with increased content of KYNA, including its antioxidant potential, would be affected by the preserved level of protein and unchanged amino acid profile. It will be worth investigating the effect of such optimized yeast on model animals, including animals with metabolic diseases.

Keywords

References

  1. Nutrients. 2022 Oct 08;14(19): [PMID: 36235834]
  2. PeerJ. 2022 Apr 12;10:e13217 [PMID: 35433131]
  3. Probiotics Antimicrob Proteins. 2021 Oct;13(5):1292-1305 [PMID: 33713310]
  4. Res Vet Sci. 2018 Aug;119:221-227 [PMID: 30005396]
  5. ACS Pharmacol Transl Sci. 2020 Jul 29;3(5):801-812 [PMID: 33073184]
  6. Molecules. 2022 Apr 01;27(7): [PMID: 35408699]
  7. Med Pr. 2003;54(5):473-9 [PMID: 14978897]
  8. J Ind Microbiol Biotechnol. 2012 Sep;39(9):1333-43 [PMID: 22648525]
  9. Neurotox Res. 2020 Jun;38(1):50-58 [PMID: 32219734]
  10. Microb Cell Fact. 2021 Oct 9;20(1):195 [PMID: 34627248]
  11. J Evol Biol. 2022 May;35(5):708-718 [PMID: 35384114]
  12. Pharmacol Rep. 2014 Dec;66(6):1127-33 [PMID: 25443745]
  13. Int J Mol Sci. 2019 Sep 12;20(18): [PMID: 31547375]
  14. PLoS One. 2019 Dec 6;14(12):e0226205 [PMID: 31809528]
  15. Methods Enzymol. 1990;186:464-78 [PMID: 1978225]
  16. Neurotoxicol Teratol. 2011 Sep-Oct;33(5):538-47 [PMID: 21763768]
  17. Cent Eur J Immunol. 2014;39(1):6-13 [PMID: 26155092]
  18. FEMS Yeast Res. 2014 Sep;14(6):966-76 [PMID: 25041612]
  19. Colloids Surf B Biointerfaces. 2023 Feb;222:113101 [PMID: 36529037]
  20. Yeast. 2020 Sep;37(9-10):541-547 [PMID: 32331000]
  21. Sci Rep. 2019 Apr 15;9(1):6108 [PMID: 30988385]
  22. Free Radic Biol Med. 2014 Aug;73:400-10 [PMID: 24929180]
  23. J Nutr. 1997 May;127(5 Suppl):838S-841S [PMID: 9164249]
  24. Oxid Med Cell Longev. 2021 May 3;2021:8874503 [PMID: 34055199]
  25. Int J Mol Sci. 2018 Apr 03;19(4): [PMID: 29614018]
  26. Amino Acids. 2009 Oct;37(4):637-41 [PMID: 18836681]
  27. Carbohydr Polym. 2019 Nov 15;224:115168 [PMID: 31472867]
  28. J Mol Model. 2015 Aug;21(8):213 [PMID: 26224603]
  29. Anal Cell Pathol (Amst). 2018 Sep 20;2018:1270483 [PMID: 30327755]
  30. Cell Metab. 2018 Feb 6;27(2):378-392.e5 [PMID: 29414686]
  31. Antioxidants (Basel). 2021 Nov 05;10(11): [PMID: 34829646]
  32. Br J Nutr. 2010 May;103(10):1525-33 [PMID: 20047701]
  33. Emerg Med Clin North Am. 1986 May;4(2):223-33 [PMID: 3516645]
  34. J Cell Physiol. 2021 Jul;236(7):4902-4912 [PMID: 33283879]
  35. EFSA J. 2023 Nov 29;21(11):e8416 [PMID: 38035143]
  36. Pol J Vet Sci. 2015;18(4):709-14 [PMID: 26812811]
  37. Animals (Basel). 2020 Mar 10;10(3): [PMID: 32164315]
  38. Front Immunol. 2018 Jan 10;8:1957 [PMID: 29379504]
  39. J Anim Physiol Anim Nutr (Berl). 2018 Dec;102(6):1720-1730 [PMID: 30225850]
  40. Cell Mol Life Sci. 2010 Feb;67(3):353-68 [PMID: 19826765]
  41. Mar Pollut Bull. 2012 Jul;64(7):1386-91 [PMID: 22622152]

MeSH Term

Male
Animals
Mice
Yarrowia
Antioxidants
Kynurenic Acid
Biomass
Mice, Inbred C57BL
Amino Acids

Chemicals

Antioxidants
Kynurenic Acid
Amino Acids

Word Cloud

Created with Highcharts 10.0.0yeastproteinacidKYNAcontenteffectincreaseddietantioxidant0lowerincludingmicebiomasshigh-KYNAaminocompositionliverconcentrationkynurenicbodyexperimentdrylow-KYNAcontroldeterminedselectedindicatorsstatuscomparedgreater��crudehigherlevelferric-reducingpoweraffectcumulativepercagetrendtowardsmeancorpuscularserumtotalanimalsmetabolicBloodBackground:unconventionalspeciesvaluablesourcemanynutrientscanusedproducehydrolyticenzymesmetabolitesendogenousmetabolitetryptophanmultidirectionaladministrationmaybeneficialmetabolismevaluatednutritionalMethods:S12enrichedhigh-performanceliquidchromatographyproximate5%growthhematologicalbiochemicalindicesbloodredox7-weekadultmaleoutbredcolonyderivedA/StBALB/cBN/aC57BL/6JinbredstrainsResults:High-KYNAcharacterized80082901g/kgmatterlessfavorablemineralsfiberfatphenolsglutathioneConsumptionweightgainfoodintakeefficiencyratiovolumehematocrithemoglobinglobulinsobservedcholesterolureanotedingestionresulteddegreelipidoxidationConclusions:improvementqualitypotentialaffectedpreservedunchangedprofilewillworthinvestigatingoptimizedmodeldiseasesEffectbiochemistryhematologyChemicalKynurenicLiverMiceNutritionalvalueRedoxYarrowialipolyticaYeast

Similar Articles

Cited By