Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications.

Jiadong Tang, Yibo Cheng, Muhua Ding, Chen Wang
Author Information
  1. Jiadong Tang: School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
  2. Yibo Cheng: School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
  3. Muhua Ding: School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
  4. Chen Wang: School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. ORCID

Abstract

Inspired from dynamic living systems that operate under out-of-equilibrium conditions in biology, developing supramolecular hydrogels with self-regulating and autonomously dynamic properties to further advance adaptive hydrogels with life-like behavior is important. This review presents recent progress of bio-inspired supramolecular hydrogels out-of-equilibrium. The principle of out-of-equilibrium self-assembly for creating bio-inspired hydrogels is discussed. Various design strategies have been identified, such as chemical-driven reaction cycles with feedback control and physically oscillatory systems. These strategies can be coupled with hydrogels to achieve temporal and spatial control over structural and mechanical properties as well as programmable lifetime. These studies open up huge opportunities for potential applications, such as fluidic guidance, information storage, drug delivery, actuators and more. Finally, we address the challenges ahead of us in the coming years, and future possibilities and prospects are identified.

Keywords

References

  1. A. Fogde, E. Rosqvist, T. A. Le, J. H. Smått, T. Sandberg, T. P. Huynh, ChemPlusChem 2023, 88, e202200426.
  2. Z. Liu, H. Sun, K. Ren, ChemPlusChem 2017, 82, 792-801.
  3. L. Valot, M. Maumus, T. Montheil, J. Martinez, D. Noël, A. Mehdi, G. Subra, ChemPlusChem 2019, 84, 1720-1729.
  4. K. Ni, R. Xu, R. Wang, M. Guo, Y. Chen, Y. Zhao, ChemPlusChem 2023, 88, e202300074.
  5. H. Zhao, D. Jiang, A. H. Schäfer, F. Seela, ChemPlusChem 2017, 82, 778-784.
  6. H. Zhao, A. Sch-fer, F. Seela, ChemPlusChem 2017, 82, 813.
  7. F. Chen, P. W. Tillberg, E. S. Boyden, Science 2015, 347, 543-548.
  8. Y. S. Zhang, A. Khademhosseini, Science 2017, 356, eaaf3627.
  9. R. Zhong, S. Talebian, B. B. Mendes, G. Wallace, R. Langer, J. Conde, J. Shi, Nat. Mater. 2023, 22, 818-831.
  10. S. Correa, A. K. Grosskopf, H. Lopez Hernandez, D. Chan, A. C. Yu, L. M. Stapleton, E. A. Appel, Chem. Rev. 2021, 121, 11385-11457.
  11. J. Li, D. J. Mooney, Nat. Rev. Mater. 2016, 1, 16071.
  12. F. Islands, D. Survey, Nature 1960, 185, 63-64.
  13. J. Y. Sun, X. Zhao, W. R. K. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z. Suo, Nature 2012, 489, 133-136.
  14. A. Döring, W. Birnbaum, D. Kuckling, Chem. Soc. Rev. 2013, 42, 7391-7420.
  15. K. Seidi, M. H. Ayoubi-Joshaghani, M. Azizi, T. Javaheri, M. Jaymand, E. Alizadeh, T. J. Webster, A. A. Yazdi, M. Niazi, M. R. Hamblin, Z. Amoozgar, R. Jahanban-Esfahlan, Nano Today 2021, 39, 101157.
  16. H. Cao, L. Duan, Y. Zhang, J. Cao, K. Zhang, Signal Transduct. Target. Ther. 2021, 6, 1-31.
  17. M. H. Ayoubi-Joshaghani, K. Seidi, M. Azizi, M. Jaymand, T. Javaheri, R. Jahanban-Esfahlan, M. R. Hamblin, Adv. Funct. Mater. 2020, 30, 2004098.
  18. D. Caccavo, S. Cascone, G. Lamberti, A. A. Barba, Chem. Soc. Rev. 2018, 47, 2357-2373.
  19. W. Zhang, R. Wang, Z. M. Sun, X. Zhu, Q. Zhao, T. Zhang, A. Cholewinski, F. Yang, B. Zhao, R. Pinnaratip, P. K. Forooshani, B. P. Lee, Chem. Soc. Rev. 2020, 49, 433-464.
  20. Q. Huang, Y. Zou, M. C. Arno, S. Chen, T. Wang, J. Gao, A. P. Dove, J. Du, Chem. Soc. Rev. 2017, 46, 6255-6275.
  21. R. Censi, P. Di Martino, T. Vermonden, W. E. Hennink, J. Controlled Release 2012, 161, 680-692.
  22. A. S. Hoffman, Adv. Drug Delivery Rev. 2012, 64, 18-23.
  23. D. Seliktar, Science 2012, 336, 1124-1129.
  24. A. M. Rosales, K. S. Anseth, Nat. Rev. Mater. 2016, 1, 1-15.
  25. Z. Zhang, J. Wang, W. Xia, D. Cao, X. Wang, Y. Kuang, Y. Luo, C. Yuan, J. Lu, X. Liu, Chem. Asian J. 2022, 17, e202200740.
  26. N. Oliva, J. Conde, K. Wang, N. Artzi, Acc. Chem. Res. 2017, 50, 669-679.
  27. F. J. Vernerey, S. Lalitha Sridhar, A. Muralidharan, S. J. Bryant, Chem. Rev. 2021, 121, 11085-11148.
  28. S. Fuchs, A. U. Ernst, L. H. Wang, K. Shariati, X. Wang, Q. Liu, M. Ma, Chem. Rev. 2021, 121, 11458-11526.
  29. V. G. Muir, J. A. Burdick, Chem. Rev. 2021, 121, 10908-10949.
  30. X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu, G. Parada, Chem. Rev. 2021, 121, 4309-4372.
  31. P. Bertsch, M. Diba, D. J. Mooney, S. C. G. Leeuwenburgh, Chem. Rev. 2023, 123, 834-873.
  32. J. A. Burdick, W. L. Murphy, Nat. Commun. 2012, 3, 1269-1276.
  33. E. Prince, E. Kumacheva, Nat. Rev. Mater. 2019, 4, 99-115.
  34. F. Acciaretti, S. Vesentini, L. Cipolla, Chem. Asian J. 2022, 17, e202200797.
  35. C. Zhang, B. Wu, Y. Zhou, F. Zhou, W. Liu, Z. Wang, Chem. Soc. Rev. 2020, 49, 3605-3637.
  36. C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. Shepherd, Science 2016, 351, 1071-1074.
  37. J. Lou, D. J. Mooney, Nat. Chem. Rev. 2022, 6, 726-744.
  38. Q. Wang, J. L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, Nature 2010, 463, 339-343.
  39. Z. Wang, H. Wei, Y. Huang, Y. Wei, J. Chen, Chem. Soc. Rev. 2023, 52, 2992-3034.
  40. C. Keplinger, J. Sun, C. C. Foo, P. Rothemund, G. M. Whitesides, Z. Suo, Science 2013, 341, 984-988.
  41. H. R. Culver, J. R. Clegg, N. A. Peppas, Acc. Chem. Res. 2017, 50, 170-178.
  42. K. W. Y. Chan, G. Liu, X. Song, H. Kim, T. Yu, D. R. Arifin, A. A. Gilad, J. Hanes, P. Walczak, P. C. M. Van Zijl, J. W. M. Bulte, M. T. McMahon, Nat. Mater. 2013, 12, 268-275.
  43. C. Yang, Z. Suo, Nat. Rev. Mater. 2018, 3, 125-142.
  44. F. Diehl, S. Hageneder, S. Fossati, S. K. Auer, J. Dostalek, U. Jonas, Chem. Soc. Rev. 2022, 3926-3963.
  45. T. Zhu, Y. Ni, G. M. Biesold, Y. Cheng, M. Ge, H. Li, J. Huang, Z. Lin, Y. Lai, Chem. Soc. Rev. 2022, 52, 473-509.
  46. Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, G. Yu, Chem. Rev. 2020, 120, 7642-7707.
  47. Y. Wang, Y. Zhu, Y. Hu, G. Zeng, Y. Zhang, C. Zhang, C. Feng, Small 2018, 14, 1703305.
  48. X. Liu, J. Liu, S. Lin, X. Zhao, Mater. Today 2020, 36, 102-124.
  49. J. Kim, J. A. Hanna, M. Byun, C. D. Santangelo, R. C. Hayward, Science 2012, 335, 1201-1205.
  50. M. A. Kuzina, D. D. Kartsev, A. V. Stratonovich, P. A. Levkin, Adv. Funct. Mater. 2023, 33, 2301421.
  51. M. E. Allen, J. W. Hindley, D. K. Baxani, O. Ces, Y. Elani, Nat. Chem. Rev. 2022, 6, 562-578.
  52. H. Yuk, J. Wu, X. Zhao, Nat. Rev. Mater. 2022, 7, 935-952.
  53. U. Blache, E. M. Ford, B. Ha, L. Rijns, O. Chaudhuri, P. Y. W. Dankers, A. M. Kloxin, J. G. Snedeker, E. Gentleman, Nat. Rev. Methods Prim. 2022, 2, 98.
  54. A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. Mater. 2020, 5, 20-43.
  55. R. Guo, D. Yu, S. Wang, L. Fu, Y. Lin, Soft Matter 2023, 19, 1465-1481.
  56. G. Yu, X. Yan, C. Han, F. Huang, Chem. Soc. Rev. 2013, 42, 6697-6722.
  57. G. M. Peters, J. T. Davis, Chem. Soc. Rev. 2016, 45, 3188-3206.
  58. X. Dou, N. Mehwish, C. Zhao, J. Liu, C. Xing, C. Feng, Acc. Chem. Res. 2020, 53, 852-862.
  59. Y. Shao, H. Jia, T. Cao, D. Liu, Acc. Chem. Res. 2017, 50, 659-668.
  60. Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin, Y. Zhao, Chem. Rev. 2022, 122, 5604-5640.
  61. L. Voorhaar, R. Hoogenboom, Chem. Soc. Rev. 2016, 45, 4013-4031.
  62. N. Das, C. Maity, ACS Catal. 2023, 13, 5544-5570.
  63. X. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165-13307.
  64. J. Li, L. Mo, C. H. Lu, T. Fu, H. H. Yang, W. Tan, Chem. Soc. Rev. 2016, 45, 1410-1431.
  65. E. A. Appel, J. del Barrio, X. J. Loh, O. A. Scherman, Chem. Soc. Rev. 2012, 41, 6195-6214.
  66. M. J. Webber, E. A. Appel, E. W. Meijer, R. Langer, Nat. Mater. 2015, 15, 13-26.
  67. K. Zhang, Q. Feng, Z. Fang, L. Gu, L. Bian, Chem. Rev. 2021, 121, 11149-11193.
  68. D. Xia, P. Wang, X. Ji, N. M. Khashab, J. L. Sessler, F. Huang, Chem. Rev. 2020, 120, 6070-6123.
  69. R. Dong, Y. Pang, Y. Su, X. Zhu, Biomater. Sci. 2015, 3, 937-954.
  70. B. Hu, C. Owh, P. L. Chee, W. R. Leow, X. Liu, Y. L. Wu, P. Guo, X. J. Loh, X. Chen, Chem. Soc. Rev. 2018, 47, 6917-6929.
  71. X. Liu, M. Gao, J. Chen, S. Guo, W. Zhu, L. Bai, W. Zhai, H. Du, H. Wu, C. Yan, Y. Shi, J. Gu, H. J. Qi, K. Zhou, Adv. Funct. Mater. 2022, e202203323.
  72. D. Del Giudice, F. Frateloreto, C. Sappino, S. Di Stefano, Eur. J. Org. Chem. 2022, e202200407.
  73. S. Wang, H. Jiang, L. Zhang, J. Jiang, M. Liu, ChemPlusChem 2018, 83, 1038-1043.
  74. R. Van Lommel, L. A. J. Rutgeerts, W. M. De Borggraeve, F. De Proft, M. Alonso, ChemPlusChem 2020, 85, 267-276.
  75. P. Wang, G. He, J. Ji, J. Li, K. Zhou, L. Tian, K. Feng, F. Sun, G. Li, ChemPlusChem 2020, 85, 1704-1709.
  76. R. Laishram, U. Maitra, ChemPlusChem 2019, 84, 853-861.
  77. C. Wang, M. P. O'Hagan, Z. Li, J. Zhang, X. Ma, H. Tian, I. Willner, Chem. Soc. Rev. 2022, 51, 720-760.
  78. S. Panja, D. J. Adams, Chem. Soc. Rev. 2021, 50, 5165-5200.
  79. M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet, B. Escuder, Chem. Soc. Rev. 2013, 42, 7086-7098.
  80. A. Roy, K. Manna, S. Pal, Mater. Chem. Front. 2022, 6, 2338-2385.
  81. B. Rieß, J. Boekhoven, ChemNanoMat 2018, 4, 710-719.
  82. D. K. Kumar, J. W. Steed, Chem. Soc. Rev. 2014, 43, 2080-2088.
  83. S. A. P. Van Rossum, M. Tena-Solsona, J. H. Van Esch, R. Eelkema, J. Boekhoven, Chem. Soc. Rev. 2017, 46, 5519-5535.
  84. M. Li, Y. Lin, Y. Zhang, L. Bian, K. Zhang, Chin. J. Chem. 2023, 41, 2697-2714.
  85. D. A. Fletcher, R. D. Mullins, Nature 2010, 463, 485-492.
  86. N. Singh, G. J. M. Formon, S. De Piccoli, T. M. Hermans, Adv. Mater. 2020, 32, 1906834.
  87. L. S. Kariyawasam, M. M. Hossain, C. S. Hartley, Angew. Chem. Int. Ed. 2021, 60, 12648-12658.
  88. S. De, R. Klajn, Adv. Mater. 2018, 30, 1706750.
  89. K. Das, L. Gabrielli, L. J. Prins, Angew. Chem. Int. Ed. 2021, 60, 20120-20143.
  90. L. Onsager, Phys. Rev. 1931, 37, 405-426.
  91. H. Annison, Criminol. Crim. Justice 2011, 11, 277-278.
  92. A. Desai, T. J. Mitchison, Annu. Rev. Cell Dev. Biol. 1997, 83-117.
  93. G. J. Brouhard, L. M. Rice, Nat. Rev. Mol. Cell Biol. 2018, 19, 451-463.
  94. H. Hess, J. L. Ross, Chem. Soc. Rev. 2017, 46, 5570-5587.
  95. E. Nogales, Rev. Lit. Arts Am. 2000, 277-302.
  96. L. Laan, N. Pavin, J. Husson, G. Romet-Lemonne, M. Van Duijn, M. P. López, R. D. Vale, F. Jülicher, S. L. Reck-Peterson, M. Dogterom, Cell 2012, 148, 502-514.
  97. T. E. Holy, M. Dogterom, B. Yurke, S. Leibler, Proc. Natl. Acad. Sci. USA 1997, 94, 6228-6231.
  98. E. Nogales, M. Whittaker, R. A. Milligan, K. H. Downing, Cell 1999, 96, 79-88.
  99. M. Jacobs, H. Smith, E. W. Taylor, J. Mol. Biol. 1974, 89, 455-468.
  100. R. Merindol, A. Walther, Chem. Soc. Rev. 2017, 46, 5588-5619.
  101. A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. De Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476-5490.
  102. A. Sharko, D. Livitz, S. De Piccoli, K. J. M. Bishop, T. M. Hermans, Chem. Rev. 2022, 122, 11759-11777.
  103. Z. Li, J. Wang, I. Willner, Adv. Funct. Mater. 2022, 32, 2200799.
  104. C. Yuan, A. Levin, W. Chen, R. Xing, Q. Zou, T. W. Herling, P. K. Challa, T. P. J. Knowles, X. Yan, Angew. Chem. Int. Ed. 2019, 58, 18116-18123.
  105. P. Zhou, R. Xing, Q. Li, J. Li, C. Yuan, X. Yan, Matter 2023, 1945-1963.
  106. I. Aprahamian, S. M. Goldup, J. Am. Chem. Soc. 2023, 145, 14169-14183.
  107. A. S. G. van Oosten, X. Chen, L. K. Chin, K. Cruz, A. E. Patteson, K. Pogoda, V. B. Shenoy, P. A. Janmey, Nature 2019, 573, 96-101.
  108. S. A. Burgess, M. L. Walker, H. Sakakibara, K. Oiwa, P. J. Knight, J. Struct. Biol. 2004, 146, 205-216.
  109. J. M. Scholey, K. Taylor, J. Kendrick-Jones, Cell Biol. Int. Rep. 1980, 4, 763.
  110. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. D. Watson, Mol. Biol. Cell 1994, 22, 164.
  111. M. Vicente-Manzanares, X. Ma, R. S. Adelstein, A. R. Horwitz, Nat. Rev. Mol. Cell Biol. 2009, 10, 778-790.
  112. S. Dhiman, A. Sarkar, S. J. George, RSC Adv. 2018, 8, 18913-18925.
  113. R. K. Grötsch, C. Wanzke, M. Speckbacher, A. Angl, B. Rieger, J. Boekhoven, J. Am. Chem. Soc. 2019, 141,9872-9878.
  114. C. Yuan, Q. Li, R. Xing, J. Li, X. Yan, Chem 2023, 9, 2425-2445.
  115. M. Tena-Solsona, B. Rieß, R. K. Grötsch, F. C. Löhrer, C. Wanzke, B. Käsdorf, A. R. Bausch, P. Müller-Buschbaum, O. Lieleg, J. Boekhoven, Nat. Commun. 2017, 8, 15895.
  116. C. W. H. Rajawasam, C. Tran, M. Weeks, K. S. McCoy, R. Ross-Shannon, O. J. Dodo, J. L. Sparks, C. S. Hartley, D. Konkolewicz, J. Am. Chem. Soc. 2023, 145, 5553-5560.
  117. J. Mu, J. Lin, P. Huang, X. Chen, Chem. Soc. Rev. 2018, 47, 5554-5573.
  118. M. Kumar, D. Sementa, V. Narang, E. Riedo, R. V. Ulijn, Chem. A Eur. J. 2020, 26, 8372-8376.
  119. C. G. Pappas, I. R. Sasselli, R. V. Ulijn, Angew. Chem. Int. Ed. 2015, 54, 8119-8123.
  120. S. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789-16792.
  121. M. Nakamoto, S. Kitano, M. Matsusaki, Angew. Chem. Int. Ed. 2022, 61, e202205125.
  122. A. Jain, S. Dhiman, A. Dhayani, P. K. Vemula, S. J. George, Nat. Commun. 2019, 10, 450.
  123. H. Lu, J. Hao, X. Wang, ChemSystemsChem 2022, 4, e202100050.
  124. A. Sorrenti, J. Leira-Iglesias, A. Sato, T. M. Hermans, Nat. Commun. 2017, 8, 15899.
  125. J. Boekhoven, W. E. Hendriksen, G. J. M. Koper, R. Eelkema, J. H. Van Esch, Science 2015, 349, 1075-1079.
  126. X. Chen, M. Stasi, J. Rodon-Fores, P. F. Großmann, A. M. Bergmann, K. Dai, M. Tena-Solsona, B. Rieger, J. Boekhoven, J. Am. Chem. Soc. 2023, 145, 6880-6887.
  127. J. P. Wojciechowski, A. D. Martin, P. Thordarson, J. Am. Chem. Soc. 2018, 140, 2869-2874.
  128. S. Ahmed, A. Chatterjee, K. Das, D. Das, Chem. Sci. 2019, 10, 7574-7578.
  129. M. Jain, B. J. Ravoo, Angew. Chem. Int. Ed. 2021, 60, 21062-21068.
  130. N. Singh, B. Lainer, G. J. M. Formon, S. De Piccoli, T. M. Hermans, J. Am. Chem. Soc. 2020, 142, 4083-4087.
  131. E. Olivieri, G. Quintard, J. V. Naubron, A. Quintard, J. Am. Chem. Soc. 2021, 143, 12650-12657.
  132. J. Pirkin-Benameur, D. Bouyer, D. Quemener, J. Membr. Sci. 2022, 658, 120742.
  133. G. Holló, I. Lagzi, J. Phys. Chem. A 2019, 123, 1498-1504.
  134. A. K. Alshamrani, J. R. Vanderveen, P. G. Jessop, Phys. Chem. Chem. Phys. 2016, 18, 19276-19288.
  135. T. Heuser, E. Weyandt, A. Walther, Angew. Chem. Int. Ed. 2015, 54, 13258-13262.
  136. N. Processes, H. Che, B. C. Buddingh, J. C. M. Van Hest, Angew. Chem. Int. Ed. 2017, 56, 12581-12585.
  137. L. Heinen, T. Heuser, A. Steinschulte, A. Walther, Nano Lett. 2017, 17, 4989-4995.
  138. X. Fan, A. Walther, Angew. Chem. Int. Ed. 2021, 60, 3619-3624.
  139. E. Jee, T. Bμnsμgi, A. F. Taylor, J. A. Pojman, Angew. Chem. Int. Ed. 2016, 55, 2127-2131.
  140. S. Panja, C. Patterson, D. J. Adams, Macromol. Rapid Commun. 2019, 40, 1900251.
  141. D. J. Adams, Chem. Commun. 2019, 55, 10154-10157.
  142. E. R. Cross, L. Cavalcanti, D. J. Adams, S. Panja, A. M. Fuentes-caparro, Chem. Mater. 2020, 32, 5264-5271.
  143. V. A. Online, J. F. Miravet, Chem. Commun. 2016, 52, 5398-5401.
  144. K. Hu, S. S. Sheiko, Chem. Commun. 2018, 54, 5899-5902.
  145. X. Fan, A. Walther, Angew. Chem. Int. Ed. 2021, 60, 11398-11405.
  146. X. Q. Xie, Y. Zhang, Y. Liang, M. Wang, Y. Cui, J. Li, C. Sen Liu, Angew. Chem. Int. Ed. 2022, 61, e202114471.
  147. J. Li, Y. Cui, Y. L. Lu, Y. Zhang, K. Zhang, C. Gu, K. Wang, Y. Liang, C. Sen Liu, Nat. Commun. 2023, 14, 5030.
  148. X. M. Chen, W. J. Feng, H. K. Bisoyi, S. Zhang, X. Chen, H. Yang, Q. Li, Nat. Commun. 2022, 13, 3216.
  149. F. J. Rizzuto, C. M. Platnich, X. Luo, Y. Shen, M. D. Dore, C. Lachance-Brais, A. Guarné, G. Cosa, H. F. Sleiman, Nat. Chem. 2021, 13, 843-849.
  150. Z. Yin, G. Song, Y. Jiao, P. Zheng, J. Xu, X. Zhang, CCS Chem. 2019, 1, 335-342.
  151. J. M. Scheiger, P. A. Levkin, Adv. Funct. Mater. 2020, 30, 1909800.
  152. M. Liu, C. N. Creemer, T. J. Reardon, J. R. Parquette, Chem. Commun. 2021, 57, 13776.
  153. S. W. Choi, W. Guan, K. Chung, Cell 2021, 184, 4115-4136.
  154. P. Karami, V. K. Rana, Q. Zhang, A. Boniface, Y. Guo, C. Moser, D. P. Pioletti, Biomacromolecules 2022, 23, 5007-5017.
  155. C. G. Pappas, T. Mutasa, P. W. J. M. Frederix, S. Fleming, S. Bai, S. Debnath, S. M. Kelly, A. Gachagan, R. V. Ulijn, Mater. Horiz. 2015, 2, 198.
  156. S. Selmani, E. Schwartz, J. T. Mulvey, H. Wei, A. Grosvirt-dramen, W. Gibson, A. I. Hochbaum, J. P. Patterson, R. Ragan, Z. Guan, J. Am. Chem. Soc. 2022, 144, 7844-7851.
  157. H. Ke, L. Yang, M. Xie, Z. Chen, H. Yao, W. Jiang, Nat. Chem. 2019, 11, 470-477.
  158. M. Cheng, C. Qian, Y. Ding, Y. Chen, T. Xiao, X. Lu, J. Jiang, L. Wang, ACS Materials Lett. 2020, 2, 425-429.
  159. S. Yu, S. Xian, Z. Ye, I. Pramudya, M. J. Webber, J. Am. Chem. Soc. 2021, 143, 12578-12589.
  160. S. Bai, X. Niu, H. Wang, L. Wei, L. Liu, X. Liu, R. Eelkema, X. Guo, J. H. van Esch, Y. Wang, Chem. Eng. J. 2021, 414, 128877.
  161. C. Yang, F. Su, Y. Xu, Y. Ma, L. Tang, N. Zhou, E. Liang, G. Wang, J. Tang, ACS Macro Lett. 2022, 11, 347-353.
  162. X. Yang, W. Shi, Z. Chen, M. Du, S. Xiao, S. Qu, C. Li, Adv. Funct. Mater. 2023, 33, 202214394.
  163. S. Lach, S. M. Yoon, B. A. Grzybowski, Chem. Soc. Rev. 2016, 45, 4766-4796.
  164. B. G. P. Van Ravensteijn, I. K. Voets, W. K. Kegel, R. Eelkema, Langmuir 2020, 36, 10639-10656.
  165. F. Späth, A. S. Maier, M. Stasi, A. M. Bergmann, K. Halama, M. Wenisch, B. Rieger, J. Boekhoven, Angew. Chem. Int. Ed. 2023, e202309318.
  166. Z. Tan, W. Lan, Z. Hou, K. Wang, Y. Li, J. Xu, X. Luo, L. Zhang, J. Zhu, Langmuir 2020, 36, 5377-5384.
  167. M. Ter Harmsel, O. R. Maguire, S. A. Runikhina, A. S. Y. Wong, W. T. S. Huck, S. R. Harutyunyan, Nature 2023, 621, 87-93.

Grants

  1. 2022YFA1505900/Ministry of Science and Technology of China
  2. 22202073/NSFC
  3. CSTB2023NSCQ-MSX0159/Natural Science Foundation of Chongqing

Word Cloud

Created with Highcharts 10.0.0hydrogelsout-of-equilibriumbio-inspireddynamicsystemssupramolecularpropertiesadaptivebehaviorself-assemblystrategiesidentifiedcontrolInspiredlivingoperateconditionsbiologydevelopingself-regulatingautonomouslyadvancelife-likeimportantreviewpresentsrecentprogressprinciplecreatingdiscussedVariousdesignchemical-drivenreactioncyclesfeedbackphysicallyoscillatorycancoupledachievetemporalspatialstructuralmechanicalwellprogrammablelifetimestudiesopenhugeopportunitiespotentialapplicationsfluidicguidanceinformationstoragedrugdeliveryactuatorsFinallyaddresschallengesaheaduscomingyearsfuturepossibilitiesprospectsBio-InspiredFar-From-EquilibriumHydrogels:DesignPrinciplesApplicationsdissipativeself-regulation

Similar Articles

Cited By

No available data.