Conversational AI and Vaccine Communication: Systematic Review of the Evidence.

Aly Passanante, Ed Pertwee, Leesa Lin, Kristi Yoonsup Lee, Joseph T Wu, Heidi J Larson
Author Information
  1. Aly Passanante: Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  2. Ed Pertwee: Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  3. Leesa Lin: Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID
  4. Kristi Yoonsup Lee: Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China (Hong Kong). ORCID
  5. Joseph T Wu: Laboratory of Data Discovery for Health, Hong Kong Science Park, Hong Kong, China (Hong Kong). ORCID
  6. Heidi J Larson: Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom. ORCID

Abstract

BACKGROUND: Since the mid-2010s, use of conversational artificial intelligence (AI; chatbots) in health care has expanded significantly, especially in the context of increased burdens on health systems and restrictions on in-person consultations with health care providers during the COVID-19 pandemic. One emerging use for conversational AI is to capture evolving questions and communicate information about vaccines and vaccination.
OBJECTIVE: The objective of this systematic review was to examine documented uses and evidence on the effectiveness of conversational AI for vaccine communication.
METHODS: This systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. PubMed, Web of Science, PsycINFO, MEDLINE, Scopus, CINAHL Complete, Cochrane Library, Embase, Epistemonikos, Global Health, Global Index Medicus, Academic Search Complete, and the University of London library database were searched for papers on the use of conversational AI for vaccine communication. The inclusion criteria were studies that included (1) documented instances of conversational AI being used for the purpose of vaccine communication and (2) evaluation data on the impact and effectiveness of the intervention.
RESULTS: After duplicates were removed, the review identified 496 unique records, which were then screened by title and abstract, of which 38 were identified for full-text review. Seven fit the inclusion criteria and were assessed and summarized in the findings of this review. Overall, vaccine chatbots deployed to date have been relatively simple in their design and have mainly been used to provide factual information to users in response to their questions about vaccines. Additionally, chatbots have been used for vaccination scheduling, appointment reminders, debunking misinformation, and, in some cases, for vaccine counseling and persuasion. Available evidence suggests that chatbots can have a positive effect on vaccine attitudes; however, studies were typically exploratory in nature, and some lacked a control group or had very small sample sizes.
CONCLUSIONS: The review found evidence of potential benefits from conversational AI for vaccine communication. Factors that may contribute to the effectiveness of vaccine chatbots include their ability to provide credible and personalized information in real time, the familiarity and accessibility of the chatbot platform, and the extent to which interactions with the chatbot feel "natural" to users. However, evaluations have focused on the short-term, direct effects of chatbots on their users. The potential longer-term and societal impacts of conversational AI have yet to be analyzed. In addition, existing studies do not adequately address how ethics apply in the field of conversational AI around vaccines. In a context where further digitalization of vaccine communication can be anticipated, additional high-quality research will be required across all these areas.

Keywords

References

  1. Med Health Care Philos. 2022 Mar;25(1):61-71 [PMID: 34480711]
  2. J Exp Psychol Appl. 2023 Mar;29(1):52-62 [PMID: 34726454]
  3. JAMA Intern Med. 2023 Jun 1;183(6):589-596 [PMID: 37115527]
  4. Int J Environ Res Public Health. 2021 Jul 30;18(15): [PMID: 34360384]
  5. J Am Med Inform Assoc. 2022 Apr 13;29(5):1000-1010 [PMID: 35137107]
  6. PLoS Curr. 2015 Feb 25;7: [PMID: 25789200]
  7. Psychol Mark. 2021 Dec;38(12):2377-2392 [PMID: 34539051]
  8. BMJ. 2017 Dec 13;359:j5635 [PMID: 29237603]
  9. PLoS One. 2018 Mar 28;13(3):e0194811 [PMID: 29590168]
  10. PLoS One. 2017 Jul 27;12(7):e0181640 [PMID: 28749996]
  11. J Am Med Inform Assoc. 2018 Sep 1;25(9):1248-1258 [PMID: 30010941]
  12. Vaccine. 2022 Jul 30;40(32):4654-4662 [PMID: 35750541]
  13. J Med Internet Res. 2020 Aug 7;22(8):e17158 [PMID: 32763886]
  14. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  15. JMIR Cancer. 2021 Nov 29;7(4):e27850 [PMID: 34847056]
  16. AMIA Jt Summits Transl Sci Proc. 2020 May 30;2020:43-52 [PMID: 32477622]
  17. J Med Internet Res. 2021 Dec 20;23(12):e32161 [PMID: 34932003]
  18. NPJ Digit Med. 2022 Oct 28;5(1):162 [PMID: 36307479]
  19. BMJ Health Care Inform. 2019 Nov;26(1): [PMID: 31767629]
  20. EFSA J. 2019 Jul 08;17(Suppl 1):e170720 [PMID: 32626457]
  21. NPJ Digit Med. 2022 Feb 17;5(1):21 [PMID: 35177772]
  22. Stud Health Technol Inform. 2019;257:17-23 [PMID: 30741166]
  23. Vaccine. 2015 Nov 17;33(46):6235-40 [PMID: 26458802]
  24. Vaccine. 2022 May 20;40(23):3087-3088 [PMID: 35484040]

MeSH Term

Humans
Artificial Intelligence
Pandemics
COVID-19
Communication
Vaccines

Chemicals

Vaccines

Word Cloud

Created with Highcharts 10.0.0vaccineconversationalAIchatbotsreviewcommunicationinformationhealthusevaccinesevidenceeffectivenessstudiesusedusersartificialintelligencecarecontextCOVID-19questionsvaccinationsystematicdocumentedSystematicCompleteGlobalinclusioncriteriaidentifiedprovidecanpotentialchatbotBACKGROUND:Sincemid-2010sexpandedsignificantlyespeciallyincreasedburdenssystemsrestrictionsin-personconsultationsproviderspandemicOneemergingcaptureevolvingcommunicateOBJECTIVE:objectiveexamineusesMETHODS:conductedfollowingPRISMAPreferredReportingItemsReviewsMeta-AnalysesguidelinesPubMedWebSciencePsycINFOMEDLINEScopusCINAHLCochraneLibraryEmbaseEpistemonikosHealthIndexMedicusAcademicSearchUniversityLondonlibrarydatabasesearchedpapersincluded1instancespurpose2evaluationdataimpactinterventionRESULTS:duplicatesremoved496uniquerecordsscreenedtitleabstract38full-textSevenfitassessedsummarizedfindingsOveralldeployeddaterelativelysimpledesignmainlyfactualresponseAdditionallyschedulingappointmentremindersdebunkingmisinformationcasescounselingpersuasionAvailablesuggestspositiveeffectattitudeshowevertypicallyexploratorynaturelackedcontrolgroupsmallsamplesizesCONCLUSIONS:foundbenefitsFactorsmaycontributeincludeabilitycrediblepersonalizedrealtimefamiliarityaccessibilityplatformextentinteractionsfeel"natural"Howeverevaluationsfocusedshort-termdirecteffectslonger-termsocietalimpactsyetanalyzedadditionexistingadequatelyaddressethicsapplyfieldarounddigitalizationanticipatedadditionalhigh-qualityresearchwillrequiredacrossareasConversationalVaccineCommunication:ReviewEvidenceagenthesitancy

Similar Articles

Cited By