Construction and validation of a predictive model for the risk of peritoneal dialysis-associated peritonitis after peritoneal dialysis catheterization.

Rong Dai, Chuyi Peng, Tian Sang, Meng Cheng, Yiping Wang, Lei Zhang
Author Information
  1. Rong Dai: Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
  2. Chuyi Peng: Graduate School, Anhui University of Chinese Medicine, Hefei, China.
  3. Tian Sang: Graduate School, Anhui University of Chinese Medicine, Hefei, China.
  4. Meng Cheng: Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
  5. Yiping Wang: Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
  6. Lei Zhang: Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.

Abstract

Aim: To construct and validate a risk prediction model for the development of peritoneal dialysis-associated peritonitis (PDAP) in patients undergoing peritoneal dialysis (PD).
Methods: This retrospective analysis included patients undergoing PD at the Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, between January 2016 and January 2021. Baseline data were collected. The primary study endpoint was PDAP occurrence. Patients were divided into a training cohort ( = 264) and a validation cohort ( = 112) for model building and validation. Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to optimize the screening variables. Predictive models were developed using multifactorial logistic regression analysis with column line plots. Receiver operating characteristic (ROC) curves, calibration curves, and Hosmer-Lemeshow goodness-of-fit tests were used to verify and evaluate the discrimination and calibration of the prediction models. Decision curve analysis (DCA) was used to assess the clinical validity of the prediction models.
Results: Five potential predictors of PDAP after PD catheterization were screened using LASSO regression analysis, including neutrophil-to-lymphocyte ratio (NLR), serum ALBumin (ALB), uric acid (UA), high sensitivity C-reactive protein (hsCRP), and diabetes mellitus (DM). Predictive models were developed by multi-factor logistic regression analysis and plotted in columns. The area under the ROC curve (AUC) values were 0.891 (95% confidence interval [CI]: 0.829-0.844) and 0.882 (95% CI: 0.722-0.957) for the training and validation cohorts, respectively. The Hosmer-Lemeshow test showed a good fit ( = 0.829 for the training cohort;  = 0.602 for the validation cohort). The DCA curves indicated that the threshold probabilities for the training and validation cohorts were 4-64% and 3-90%, respectively, predicting a good net gain for the clinical model.
Conclusion: NLR, ALB, UA, hsCRP, and DM are independent predictors of PDAP after PD catheterization. The column line graph model constructed based on the abovementioned factors has good discriminatory and calibrating ability and helps to predict the risk of PDAP after PD catheterization.

Keywords

References

  1. Nat Rev Nephrol. 2017 Feb;13(2):90-103 [PMID: 28029154]
  2. Clin Exp Nephrol. 2014 Aug;18(4):649-54 [PMID: 24085653]
  3. Eur J Nucl Med Mol Imaging. 2020 Jan;47(1):136-146 [PMID: 31492993]
  4. Front Med (Lausanne). 2021 Mar 19;8:639744 [PMID: 33842502]
  5. Surg Infect (Larchmt). 2013 Dec;14(6):540-6 [PMID: 24116738]
  6. Kidney Blood Press Res. 2018;43(2):490-499 [PMID: 29627842]
  7. Int J Mol Sci. 2022 Mar 16;23(6): [PMID: 35328614]
  8. J Clin Endocrinol Metab. 2022 May 17;107(6):e2523-e2531 [PMID: 35137178]
  9. Multivariate Behav Res. 2019 Jan-Feb;54(1):154 [PMID: 30810386]
  10. Int J Mol Sci. 2020 Jun 06;21(11): [PMID: 33561034]
  11. PLoS One. 2018 Jan 3;13(1):e0190410 [PMID: 29298330]
  12. BMC Nephrol. 2017 Jun 5;18(1):186 [PMID: 28583107]
  13. Int J Infect Dis. 2010 Jun;14(6):e489-93 [PMID: 19926324]
  14. Clin J Am Soc Nephrol. 2016 Sep 7;11(9):1546-1556 [PMID: 27340285]
  15. Lancet Oncol. 2015 Apr;16(4):e173-80 [PMID: 25846097]
  16. Front Med (Lausanne). 2021 Jul 26;8:699502 [PMID: 34381800]
  17. Am J Kidney Dis. 2020 Jul;76(1):42-53 [PMID: 31932094]
  18. Am J Kidney Dis. 2018 Aug;72(2):188-197 [PMID: 29277508]
  19. Oxid Med Cell Longev. 2019 Feb 18;2019:3021785 [PMID: 30911344]
  20. Kidney Blood Press Res. 2013;37(4-5):252-8 [PMID: 23867170]
  21. Adv Perit Dial. 2013;29:55-60 [PMID: 24344493]
  22. Clin Nutr. 2018 Oct;37(5):1575-1583 [PMID: 28912009]
  23. Diabetes Care. 2003 Feb;26(2):510-3 [PMID: 12547890]
  24. BMC Nephrol. 2020 Nov 25;21(1):511 [PMID: 33238906]
  25. Front Cardiovasc Med. 2021 Nov 03;8:751182 [PMID: 34805305]
  26. Clin J Am Soc Nephrol. 2011 Aug;6(8):1944-51 [PMID: 21737854]
  27. J Am Heart Assoc. 2015 May 05;4(5): [PMID: 25944876]
  28. Diabetes Metab Res Rev. 2021 Nov;37(8):e3446 [PMID: 33686799]
  29. Ren Fail. 2020 Nov;42(1):447-454 [PMID: 32401146]
  30. Clin J Am Soc Nephrol. 2016 Jul 7;11(7):1219-1226 [PMID: 27269302]
  31. J Transl Med. 2019 Mar 15;17(1):86 [PMID: 30876475]
  32. Perit Dial Int. 2016 9-10;36(5):481-508 [PMID: 27282851]
  33. J Nephrol. 2013 Mar-Apr;26(2):243-53 [PMID: 22684644]
  34. Clin J Am Soc Nephrol. 2017 Dec 7;12(12):2032-2045 [PMID: 28522654]
  35. Saudi J Kidney Dis Transpl. 2020 Mar-Apr;31(2):320-334 [PMID: 32394904]
  36. Scand J Clin Lab Invest. 2021 Jul;81(4):282-289 [PMID: 33974458]
  37. Sci Rep. 2018 Oct 8;8(1):14977 [PMID: 30297724]
  38. Am J Kidney Dis. 2003 Nov;42(5):864-81 [PMID: 14582032]
  39. Front Med (Lausanne). 2022 Apr 26;9:875154 [PMID: 35559352]
  40. J Am Soc Nephrol. 2007 Jul;18(7):2004-13 [PMID: 17568021]
  41. Kidney Res Clin Pract. 2016 Sep;35(3):169-75 [PMID: 27668161]
  42. Am J Kidney Dis. 2020 May;75(5):772-781 [PMID: 31699518]
  43. BMJ. 2020 Mar 18;368:m441 [PMID: 32188600]
  44. J Gastrointest Oncol. 2022 Aug;13(4):1772-1781 [PMID: 36092324]
  45. Contrib Nephrol. 2018;192:103-109 [PMID: 29393137]
  46. Nephrology (Carlton). 2017 Jun;22(6):427-435 [PMID: 26370323]
  47. Clin J Am Soc Nephrol. 2009 Jul;4(7):1195-200 [PMID: 19406969]
  48. Ren Fail. 2013;35(1):29-36 [PMID: 23113674]
  49. Int J Gen Med. 2016 Jul 15;9:229-55 [PMID: 27486341]
  50. Int J Mol Med. 2015 May;35(5):1347-54 [PMID: 25813103]
  51. Ren Fail. 2020 Nov;42(1):613-621 [PMID: 32611209]
  52. BMC Nephrol. 2020 Apr 25;21(1):148 [PMID: 32334567]
  53. Am J Kidney Dis. 2003 Mar;41(3):664-9 [PMID: 12612991]
  54. Am J Nephrol. 2017;46(5):408-416 [PMID: 29130984]
  55. Am J Kidney Dis. 2014 Aug;64(2):278-89 [PMID: 24751170]
  56. Ren Fail. 2020 Nov;42(1):600-606 [PMID: 32602387]
  57. Rheumatology (Oxford). 2022 Jul 6;61(7):2886-2893 [PMID: 34726692]
  58. Am J Emerg Med. 2017 Jan;35(1):176-177 [PMID: 27771224]
  59. J Am Heart Assoc. 2018 Feb 24;7(5): [PMID: 29478023]
  60. Perit Dial Int. 2009 May-Jun;29(3):292-6 [PMID: 19458301]
  61. World J Diabetes. 2020 Oct 15;11(10):435-446 [PMID: 33133391]
  62. PLoS One. 2019 Dec 12;14(12):e0225316 [PMID: 31830041]
  63. Am J Physiol Renal Physiol. 2015 May 1;308(9):F993-F1003 [PMID: 25651569]
  64. Iran J Kidney Dis. 2016 Jul;10(4):217-23 [PMID: 27514769]

Word Cloud

Created with Highcharts 10.0.0peritonealmodelvalidationPDAPPDanalysiscatheterizationdialysistrainingcohortregressionmodels0riskpredictiondialysis-associatedperitonitiscurvesgoodpatientsundergoingJanuaryLASSOPredictivedevelopedusinglogisticcolumnlineROCcalibrationHosmer-LemeshowusedcurveDCAclinicalpredictorsNLRALBUAhsCRPDM95%cohortsrespectively = 0predictiveAim:constructvalidatedevelopmentMethods:retrospectiveincludedDepartmentNephrologyFirstAffiliatedHospitalAnhuiUniversityChineseMedicine20162021BaselinedatacollectedprimarystudyendpointoccurrencePatientsdivided = 264 = 112buildingLeastAbsoluteShrinkageSelectionOperatorappliedoptimizescreeningvariablesmultifactorialplotsReceiveroperatingcharacteristicgoodness-of-fittestsverifyevaluatediscriminationDecisionassessvalidityResults:Fivepotentialscreenedincludingneutrophil-to-lymphocyteratioserumALBuminuricacidhighsensitivityC-reactiveproteindiabetesmellitusmulti-factorplottedcolumnsareaAUCvalues891confidenceinterval[CI]:829-0844882CI:722-0957testshowedfit829602indicatedthresholdprobabilities4-64%3-90%predictingnetgainConclusion:independentgraphconstructedbasedabovementionedfactorsdiscriminatorycalibratingabilityhelpspredictConstructionnomogram

Similar Articles

Cited By