The inhibitory mechanism of a small protein reveals its role in antimicrobial peptide sensing.
Shan Jiang, Lydia C Steup, Charlotte Kippnich, Symela Lazaridi, Gabriele Malengo, Thomas Lemmin, Jing Yuan
Author Information
Shan Jiang: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany. ORCID
Lydia C Steup: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
Charlotte Kippnich: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
Symela Lazaridi: Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, 3012 Bern, Switzerland.
Gabriele Malengo: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
Thomas Lemmin: Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, 3012 Bern, Switzerland. ORCID
Jing Yuan: Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany. ORCID
中文译文
English
A large number of small membrane proteins have been uncovered in bacteria, but their mechanism of action has remained mostly elusive. Here, we investigate the mechanism of a physiologically important small protein, MgrB, which represses the activity of the sensor kinase PhoQ and is widely distributed among enterobacteria. The PhoQ/PhoP two-component system is a master regulator of the bacterial virulence program and interacts with MgrB to modulate bacterial virulence, fitness, and drug resistance. A combination of cross-linking approaches with functional assays and protein dynamic simulations revealed structural rearrangements due to interactions between MgrB and PhoQ near the membrane/periplasm interface and along the transmembrane helices. These interactions induce the movement of the PhoQ catalytic domain and the repression of its activity. Without MgrB, PhoQ appears to be much less sensitive to antimicrobial peptides, including the commonly used C18G. In the presence of MgrB, C18G promotes MgrB to dissociate from PhoQ, thus activating PhoQ via derepression. Our findings reveal the inhibitory mechanism of the small protein MgrB and uncover its importance in antimicrobial peptide sensing.
Nat Commun. 2016 Jul 29;7:12340
[PMID: 27471053 ]
Curr Opin Microbiol. 2017 Oct;39:81-88
[PMID: 29111488 ]
Mol Microbiol. 2016 Nov;102(3):430-445
[PMID: 27447896 ]
Mol Microbiol. 2016 Sep;101(6):1024-38
[PMID: 27282333 ]
Microlife. 2020 Oct 17;1(1):uqaa002
[PMID: 37223003 ]
PLoS Genet. 2022 Mar 4;18(3):e1010074
[PMID: 35245279 ]
Structure. 2012 Jan 11;20(1):56-66
[PMID: 22244755 ]
Cell. 1996 Jan 12;84(1):165-74
[PMID: 8548821 ]
Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):E77-81
[PMID: 21464330 ]
J Cell Biol. 2015 Oct 12;211(1):91-104
[PMID: 26459600 ]
J Mol Biol. 2006 Mar 10;356(5):1193-206
[PMID: 16406409 ]
J Bacteriol. 2022 Jan 18;204(1):e0034421
[PMID: 34516282 ]
Nat Methods. 2022 Jun;19(6):679-682
[PMID: 35637307 ]
PLoS Genet. 2009 Dec;5(12):e1000788
[PMID: 20041203 ]
BMC Biol. 2014 Dec 05;12:96
[PMID: 25475548 ]
Mol Cell. 2007 Apr 27;26(2):165-74
[PMID: 17466620 ]
Biosci Biotechnol Biochem. 2019 Apr;83(4):684-694
[PMID: 30632929 ]
J Biol Chem. 1996 Oct 25;271(43):26630-6
[PMID: 8900137 ]
J Comput Chem. 2008 Aug;29(11):1859-65
[PMID: 18351591 ]
EcoSal Plus. 2020 May;9(1):
[PMID: 32385980 ]
J Bacteriol. 2002 Oct;184(19):5468-78
[PMID: 12218035 ]
J Bacteriol. 2020 Jun 1;:
[PMID: 32482726 ]
PLoS Comput Biol. 2017 Jul 26;13(7):e1005659
[PMID: 28746339 ]
J Bacteriol. 2003 Mar;185(6):1935-41
[PMID: 12618457 ]
J Biol Chem. 2008 May 16;283(20):13762-70
[PMID: 18348979 ]
J Agric Food Chem. 2022 Jun 8;70(22):6755-6763
[PMID: 35607919 ]
Cell. 2019 Aug 22;178(5):1245-1259.e14
[PMID: 31402174 ]
Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18712-7
[PMID: 17998538 ]
Sci Rep. 2022 Jul 28;12(1):12939
[PMID: 35902639 ]
Microbiol Mol Biol Rev. 2021 Aug 18;85(3):e0017620
[PMID: 34191587 ]
Mol Microbiol. 2012 Jul;85(2):299-313
[PMID: 22651704 ]
Structure. 2014 Sep 2;22(9):1239-1251
[PMID: 25087511 ]
Nat Struct Mol Biol. 2022 Nov;29(11):1056-1067
[PMID: 36344848 ]
J Bacteriol. 2022 Jan 18;204(1):e0031321
[PMID: 34543104 ]
J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273
[PMID: 23341755 ]
J Bacteriol. 2011 Mar;193(5):1222-8
[PMID: 21193607 ]
J Biol Chem. 2021 Jan-Jun;296:100148
[PMID: 33277358 ]
Biosci Biotechnol Biochem. 2005 Jul;69(7):1281-7
[PMID: 16041131 ]
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798
[PMID: 29183977 ]
J Mol Biol. 2003 Jan 24;325(4):795-807
[PMID: 12507481 ]
Nat Methods. 2006 Apr;3(4):263-5
[PMID: 16554830 ]
J Chem Theory Comput. 2019 Aug 13;15(8):4673-4686
[PMID: 31265271 ]
Nat Chem Biol. 2023 Apr;19(4):451-459
[PMID: 36482094 ]
Front Genet. 2013 Dec 16;4:286
[PMID: 24379829 ]
J Bacteriol. 2012 Mar;194(6):1457-63
[PMID: 22267510 ]
Cell. 2005 Aug 12;122(3):461-72
[PMID: 16096064 ]
Sci Signal. 2020 Apr 21;13(628):
[PMID: 32317368 ]
Bacterial Proteins
Antimicrobial Peptides
Membrane Proteins
Periplasm
Gene Expression Regulation, Bacterial
Bacterial Proteins
Antimicrobial Peptides
Membrane Proteins