Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers.

Xuan Liu, Zhenhua Ma, Yanfei Wang, Hao Jia, Zheng Wang, Lihuan Zhang
Author Information
  1. Xuan Liu: Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China.
  2. Zhenhua Ma: Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China.
  3. Yanfei Wang: Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China.
  4. Hao Jia: Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China.
  5. Zheng Wang: Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China.
  6. Lihuan Zhang: Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China.

Abstract

Introduction: Heat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them.
Methods: Thus, at 28  days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28-42  days, the HS was kept at 31 ± 1°C (9:00-17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance ( = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment.
Results and discussion: The results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of decreased the relative abundance of . Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with , and , and negatively correlated with . PE was negatively correlated with and , and positively with . In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress.

Keywords

References

  1. J Therm Biol. 2022 Aug;108:103302 [PMID: 36031223]
  2. Animals (Basel). 2023 May 12;13(10): [PMID: 37238049]
  3. J Poult Sci. 2017 Oct 25;54(4):292-295 [PMID: 32908439]
  4. Dev Comp Immunol. 2010 Dec;34(12):1254-62 [PMID: 20621117]
  5. Mol Cell Biochem. 2014 Sep;394(1-2):247-59 [PMID: 24898782]
  6. Poult Sci. 2022 Apr;101(4):101705 [PMID: 35183990]
  7. Sci Rep. 2022 Nov 16;12(1):19704 [PMID: 36385125]
  8. J Dairy Sci. 2023 Sep;106(9):6114-6127 [PMID: 37479578]
  9. BMC Genomics. 2018 Oct 16;19(1):749 [PMID: 30326831]
  10. Poult Sci. 2021 Feb;100(2):1034-1048 [PMID: 33518062]
  11. Poult Sci. 2023 Mar;102(3):102454 [PMID: 36682129]
  12. Poult Sci. 2021 Aug;100(8):101139 [PMID: 34225200]
  13. PLoS One. 2017 Jul 31;12(7):e0181900 [PMID: 28759571]
  14. J Therm Biol. 2021 Aug;100:103040 [PMID: 34503787]
  15. Ann Med. 2023 Dec;55(1):2216942 [PMID: 37243569]
  16. Animals (Basel). 2022 Aug 26;12(17): [PMID: 36077916]
  17. Front Physiol. 2022 May 23;13:913696 [PMID: 35677094]
  18. Drug Metab Dispos. 2014 Mar;42(3):361-8 [PMID: 24335393]
  19. BMC Genomics. 2021 Jul 13;22(1):534 [PMID: 34256697]
  20. J Proteomics. 2023 Mar 30;276:104837 [PMID: 36781045]
  21. Poult Sci. 2015 Jul;94(7):1635-44 [PMID: 25910904]
  22. Front Pharmacol. 2021 Apr 26;12:628651 [PMID: 33981220]
  23. Poult Sci. 2022 Dec;101(12):102199 [PMID: 36257073]
  24. Front Physiol. 2019 Jun 18;10:764 [PMID: 31275169]
  25. Anim Microbiome. 2022 Apr 21;4(1):28 [PMID: 35449035]
  26. Oncogene. 2008 Apr 7;27(16):2312-9 [PMID: 18391973]
  27. PLoS One. 2021 Jan 6;16(1):e0244724 [PMID: 33406150]
  28. J Appl Genet. 2021 May;62(2):307-317 [PMID: 33638812]
  29. Front Vet Sci. 2021 Jul 23;8:699081 [PMID: 34368284]
  30. PLoS One. 2014 Jul 29;9(7):e102204 [PMID: 25072282]
  31. Gut Microbes. 2021 Jan-Dec;13(1):1-19 [PMID: 33557667]
  32. Trop Anim Health Prod. 2020 Nov;52(6):2987-2996 [PMID: 32506237]
  33. Poult Sci. 2023 Feb;102(2):102341 [PMID: 36481710]
  34. Zool Res. 2022 Mar 18;43(2):241-254 [PMID: 35194983]
  35. Poult Sci. 2012 Sep;91(9):2282-7 [PMID: 22912464]
  36. Vet World. 2022 Jul;15(7):1657-1664 [PMID: 36185518]
  37. Exp Ther Med. 2021 Sep;22(3):997 [PMID: 34345279]
  38. Adv Exp Med Biol. 2019;1155:1049-1056 [PMID: 31468466]
  39. Poult Sci. 2023 Mar;102(3):102408 [PMID: 36584416]
  40. BMC Genomics. 2018 Aug 30;19(1):643 [PMID: 30165812]
  41. Sci Rep. 2017 Apr 05;7:45564 [PMID: 28378745]
  42. Mar Biotechnol (NY). 2022 Oct;24(5):856-870 [PMID: 35930066]
  43. J Anim Sci. 2023 Jan 3;101: [PMID: 36283032]
  44. Poult Sci. 2016 Aug 1;95(8):1869-80 [PMID: 27209434]
  45. Comp Biochem Physiol A Mol Integr Physiol. 2014 Mar;169:70-6 [PMID: 24389089]
  46. Front Microbiol. 2019 Jun 18;10:1333 [PMID: 31275268]
  47. Poult Sci. 2022 Dec;101(12):102167 [PMID: 36257074]
  48. BMC Genomics. 2017 Aug 16;18(1):626 [PMID: 28814270]
  49. J Nutr Sci. 2020 Jul 06;9:e28 [PMID: 32742645]
  50. Int J Mol Sci. 2023 May 24;24(11): [PMID: 37298157]
  51. Annu Rev Immunol. 2009;27:693-733 [PMID: 19302050]
  52. Animals (Basel). 2021 Nov 04;11(11): [PMID: 34827885]
  53. Environ Sci Pollut Res Int. 2021 Mar;28(9):10707-10717 [PMID: 33098000]
  54. Gut Microbes. 2014 Jan-Feb;5(1):108-19 [PMID: 24256702]
  55. Expert Rev Gastroenterol Hepatol. 2017 Sep;11(9):821-834 [PMID: 28650209]
  56. Cardiovasc Res. 2023 Jul 4;119(7):1524-1536 [PMID: 36866436]
  57. Vet Med Sci. 2021 Jul;7(4):1369-1378 [PMID: 33639042]
  58. Vet Res Commun. 2023 Jun;47(2):861-875 [PMID: 36580224]
  59. Poult Sci. 2019 Mar 1;98(3):1102-1110 [PMID: 30452726]
  60. Cell Stress Chaperones. 2021 Nov;26(6):917-936 [PMID: 34524641]
  61. PLoS One. 2018 May 24;13(5):e0197762 [PMID: 29795613]
  62. Front Vet Sci. 2021 Jan 08;7:610541 [PMID: 33490137]
  63. J Anim Sci Biotechnol. 2018 Sep 10;9:61 [PMID: 30214720]
  64. Trends Biochem Sci. 2017 Feb;42(2):141-154 [PMID: 28029518]
  65. Trop Anim Health Prod. 2023 Feb 24;55(2):96 [PMID: 36823253]
  66. Naunyn Schmiedebergs Arch Pharmacol. 2021 Sep;394(9):1869-1878 [PMID: 34324017]
  67. Microorganisms. 2022 Sep 06;10(9): [PMID: 36144397]
  68. Sci Rep. 2021 Feb 4;11(1):3157 [PMID: 33542475]
  69. J Anim Sci Biotechnol. 2022 Jul 18;13(1):79 [PMID: 35843965]
  70. J Hazard Mater. 2022 Jun 5;431:128589 [PMID: 35247738]
  71. Mar Pollut Bull. 2023 Jul;192:115017 [PMID: 37172343]
  72. Asian-Australas J Anim Sci. 2019 Jan;32(1):110-117 [PMID: 28728379]
  73. Appl Microbiol Biotechnol. 2020 Nov;104(21):9327-9342 [PMID: 32960293]
  74. Poult Sci. 2021 May;100(5):101030 [PMID: 33752066]
  75. Life Sci. 2018 Jan 15;193:124-131 [PMID: 29158051]
  76. Front Pharmacol. 2014 Aug 26;5:196 [PMID: 25206336]
  77. Poult Sci. 2021 Sep;100(9):101315 [PMID: 34280650]
  78. Foods. 2021 Dec 27;11(1): [PMID: 35010183]
  79. J Anim Sci Technol. 2021 Mar;63(2):211-247 [PMID: 33987600]
  80. Hepatology. 2016 Sep;64(3):955-65 [PMID: 26773297]
  81. Gene. 2021 Nov 30;803:145893 [PMID: 34384864]
  82. Biochim Biophys Acta. 2012 Oct;1823(10):1945-57 [PMID: 22884976]
  83. Animals (Basel). 2022 May 24;12(11): [PMID: 35681802]
  84. BMC Vet Res. 2022 Jul 23;18(1):289 [PMID: 35871002]
  85. Front Physiol. 2022 Apr 29;13:890520 [PMID: 35574439]
  86. Nephron Physiol. 2011;118(1):p22-7 [PMID: 21071984]
  87. Aging (Albany NY). 2019 Jun 26;11(12):4183-4197 [PMID: 31242135]
  88. Xenobiotica. 1999 Nov;29(11):1181-9 [PMID: 10598751]
  89. Animal. 2021 Jul;15(7):100275 [PMID: 34120075]
  90. Indian J Clin Biochem. 2014 Jul;29(3):269-78 [PMID: 24966474]
  91. Front Immunol. 2020 Jun 09;11:906 [PMID: 32582143]
  92. Life (Basel). 2023 May 24;13(6): [PMID: 37374022]
  93. Stress. 2018 Jan;21(1):51-58 [PMID: 29115887]
  94. Cell Host Microbe. 2013 Aug 14;14(2):207-15 [PMID: 23954159]
  95. Genes (Basel). 2021 Feb 10;12(2): [PMID: 33578825]
  96. 3 Biotech. 2019 Aug;9(8):316 [PMID: 31406638]
  97. Mucosal Immunol. 2019 Sep;12(5):1082-1091 [PMID: 31142830]
  98. Int Immunopharmacol. 2023 Jan;114:109503 [PMID: 36459924]
  99. iScience. 2022 Oct 25;25(11):105437 [PMID: 36388972]
  100. Front Vet Sci. 2018 Oct 23;5:254 [PMID: 30406117]
  101. Animals (Basel). 2022 Oct 01;12(19): [PMID: 36230385]
  102. Fish Shellfish Immunol. 2018 Jan;72:528-543 [PMID: 29155030]
  103. BMC Genomics. 2019 Jun 17;20(1):502 [PMID: 31208322]
  104. Anim Biosci. 2021 Nov;34(11):1839-1848 [PMID: 34445851]
  105. Biochem Pharmacol. 2023 Mar;209:115434 [PMID: 36708886]
  106. Am J Physiol Regul Integr Comp Physiol. 2009 Sep;297(3):R690-8 [PMID: 19553496]
  107. Ecotoxicol Environ Saf. 2023 May;256:114851 [PMID: 37004430]
  108. BMC Genomics. 2014 Dec 10;15:1084 [PMID: 25494716]
  109. Int J Mol Sci. 2023 Jun 16;24(12): [PMID: 37373380]

Word Cloud

Created with Highcharts 10.0.0stressheatbroilersshowedcomplexgenesmetabolitesCONHSresultsKEGGenrichmentdifferentialpathwaycorrelatedintestinalHeatcanpoultryinteractionsmicroorganismsdaysbodytreatmentgrowthperformancececalinvestigationmainlyenrichedsignalingrelativeabundanceanalysispositivelynegativelyreducemicrobiotatranscriptomemetabolomeIntroduction:affectproductionpresentunclearaffectsgeneticmetabolicmicrobialchangeswellthemMethods:Thus28 agetotal200ArborAcressimilarweightsrandomlydividedcontrol5replicatesrespectively20perreplication28-42 kept31 ± 1°C9:00-17:008 htimemaintained21 ± 1°C42nddayexperimentcalculated = 8collected36tissuestranscriptomicmetabolomic4contentsmetagenomicResultsdiscussion:indicatesignificantlyreducedaveragedailygainweightvalue< 005TranscriptomeNF-kBMetabolomicsmTOR16SrDNAampliconsequencingindicatedincreaseddecreasedMulti-omicsco-participatingpurinemetabolismPearsoncorrelationfoundornithinePEconclusiongeneratelargeamountsreactiveoxygenincreasetypesharmfulbacterianutrientabsorptionantioxidantcapacitytherebydamagehealthimmunefunctionindicatorsbiologicalprocessmanifestedregulationprovidingfoundationaltheoreticalbasissolvingproblemexposurecausealterationsbroiler

Similar Articles

Cited By