The acute effects of exercise intensity and inorganic nitrate supplementation on vascular health in females after menopause.

Austin C Hogwood, Joaquin Ortiz de Zevallos, Nathan Weeldreyer, James R Clark, Vincent Mazzella, Lauren Cain, Dylan Myaing, Kaitlin M Love, Arthur Weltman, Jason D Allen
Author Information
  1. Austin C Hogwood: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States. ORCID
  2. Joaquin Ortiz de Zevallos: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States. ORCID
  3. Nathan Weeldreyer: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States.
  4. James R Clark: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States.
  5. Vincent Mazzella: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States.
  6. Lauren Cain: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States.
  7. Dylan Myaing: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States.
  8. Kaitlin M Love: Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States.
  9. Arthur Weltman: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States.
  10. Jason D Allen: Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States. ORCID

Abstract

Menopause is associated with reduced nitric oxide bioavailability and vascular function. Although exercise is known to improve vascular function, this is blunted in estrogen-deficient females post-menopause (PM). Here, we examined the effects of acute exercise at differing intensities with and without inorganic nitrate (NO) supplementation on vascular function in females PM. Participants were tested in a double-blinded, block-randomized design, consuming ∼13 mmol NO in the form of beetroot juice (BRJ; = 12) or placebo (PL; = 12) for 2 days before experimental visits and 2 h before testing. Visits consisted of vascular health measures before () and every 30 min after (, and ) calorically matched high-intensity exercise (HIE), moderate-intensity exercise (MIE), and a nonexercise control (CON). Blood was sampled at rest and 5-min postexercise for NO, NO, and ET-1. BRJ increased N-oxides and decreased ET-1 compared with PL, findings which were unchanged after experimental conditions ( < 0.05). BRJ improved peak Δflow-mediated dilation (FMD) compared with PL ( < 0.05), defined as the largest ΔFMD for each individual participant across all time points. FMD across time revealed an improvement ( = 0.05) in FMD between BRJ + HIE versus BRJ + CON, while BRJ + MIE had medium effects compared with BRJ + CON. In conclusion, NO supplementation combined with HIE improved FMD in postmenopausal females. NO supplementation combined with MIE may offer an alternative to those unwilling to perform HIE. Future studies should test whether long-term exercise training at high intensities with NO supplementation can enhance vascular health in females PM. This study compared exercise-induced changes in flow-mediated dilation after acute moderate- and high-intensity exercise in females postmenopause supplementing either inorganic nitrate (beetroot juice) or placebo. BRJ improved peak ΔFMD postexercise, and BRJ + HIE increased FMD measured as FMD over time. Neither PL + MIE nor PL + HIE improved FMD. These findings suggest that inorganic nitrate supplementation combined with high-intensity exercise may benefit vascular health in females PM.

Keywords

References

  1. J Clin Endocrinol Metab. 2009 Sep;94(9):3513-20 [PMID: 19509105]
  2. Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1211-8 [PMID: 22245769]
  3. Exp Gerontol. 2023 Jan;171:111990 [PMID: 36397637]
  4. Ethn Dis. 2013 Winter;23(1):43-8 [PMID: 23495621]
  5. J Appl Physiol (1985). 2001 Mar;90(3):1102-10 [PMID: 11181626]
  6. Nutrients. 2019 Apr 26;11(5): [PMID: 31035478]
  7. J Appl Physiol (1985). 2011 Jun;110(6):1582-91 [PMID: 21454745]
  8. J Appl Physiol (1985). 2017 Jan 1;122(1):11-19 [PMID: 27834671]
  9. Br J Clin Pharmacol. 2021 Feb;87(2):577-587 [PMID: 32520418]
  10. Biol Sex Differ. 2017 Oct 24;8(1):33 [PMID: 29065927]
  11. Obstet Gynecol. 2013 Jan;121(1):172-6 [PMID: 23262943]
  12. Compr Physiol. 2015 Dec 15;6(1):1-32 [PMID: 26756625]
  13. Clin Sci (Lond). 2011 Jan;120(1):13-23 [PMID: 20642454]
  14. Sports Med. 2015 May;45(5):679-92 [PMID: 25771785]
  15. Sports Med. 2015 Feb;45(2):279-96 [PMID: 25281334]
  16. Appl Physiol Nutr Metab. 2022 Jul 1;47(7):749-761 [PMID: 35358395]
  17. J Appl Physiol Respir Environ Exerc Physiol. 1983 Apr;54(4):1032-8 [PMID: 6853279]
  18. Nitric Oxide. 2015 Aug 1;48:44-50 [PMID: 25937621]
  19. J Appl Physiol (1985). 2020 May 1;128(5):1355-1364 [PMID: 32240013]
  20. J Am Coll Cardiol. 2002 Jan 16;39(2):257-65 [PMID: 11788217]
  21. Nitric Oxide. 2016 Apr 1;54:1-7 [PMID: 26778277]
  22. Free Radic Biol Med. 2013 Feb;55:93-100 [PMID: 23183324]
  23. Am J Physiol Heart Circ Physiol. 2020 Feb 1;318(2):H301-H325 [PMID: 31886718]
  24. Nitric Oxide. 2019 Apr 1;85:10-16 [PMID: 30668996]
  25. Am J Physiol Regul Integr Comp Physiol. 2017 Jul 1;313(1):R51-R57 [PMID: 28438762]
  26. Int J Sports Med. 2013 May;34(5):409-14 [PMID: 23041960]
  27. Circulation. 2020 Dec 22;142(25):e506-e532 [PMID: 33251828]
  28. J Hypertens. 2005 Feb;23(2):285-92 [PMID: 15662216]
  29. Exp Physiol. 2020 Sep;105(9):1470-1490 [PMID: 32613697]
  30. J Am Coll Cardiol. 2004 Oct 19;44(8):1636-40 [PMID: 15489096]
  31. Exp Gerontol. 2017 May;91:57-63 [PMID: 28216412]
  32. J Physiol. 2019 Oct;597(19):4901-4914 [PMID: 31077372]
  33. J Appl Physiol (1985). 2013 Aug 1;115(3):325-36 [PMID: 23640589]
  34. Cell Metab. 2018 Jul 03;28(1):9-22 [PMID: 29972800]
  35. Eur J Appl Physiol. 2007 Jul;100(4):403-8 [PMID: 17394009]
  36. Med Sci Sports Exerc. 2008 Nov;40(11):1863-72 [PMID: 18845966]
  37. J Womens Health (Larchmt). 2014 Mar;23(3):260-6 [PMID: 24299160]
  38. Am J Physiol Heart Circ Physiol. 2023 Jun 1;324(6):H732-H738 [PMID: 36961490]
  39. PLoS One. 2014 Jan 20;9(1):e85450 [PMID: 24465565]
  40. Hypertens Res. 2017 Feb;40(2):146-172 [PMID: 27733765]
  41. Hypertension. 2011 Mar;57(3):363-9 [PMID: 21263128]
  42. Nitric Oxide. 2016 Dec 30;61:38-44 [PMID: 27769826]
  43. Blood. 2006 Jan 15;107(2):566-74 [PMID: 16195332]
  44. PLoS One. 2014 Jan 14;9(1):e85276 [PMID: 24454832]
  45. Ann Intern Med. 1998 Feb 15;128(4):285-8 [PMID: 9471931]
  46. Nitric Oxide. 2015 Aug 1;48:38-43 [PMID: 25280991]
  47. Diabetes Metab. 2016 Dec;42(6):433-441 [PMID: 27567125]
  48. Eur J Appl Physiol. 2018 Mar;118(3):523-530 [PMID: 29234916]
  49. Nutr Res. 2012 Oct;32(10):795-9 [PMID: 23146777]
  50. Menopause. 2018 Dec 21;26(6):588-597 [PMID: 30586004]
  51. Nutrients. 2019 Jun 13;11(6): [PMID: 31200505]
  52. Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):348-52 [PMID: 18063808]
  53. J Clin Endocrinol Metab. 2000 Apr;85(4):1577-83 [PMID: 10770200]
  54. Methods Mol Biol. 2008;476:11-28 [PMID: 19157006]
  55. Am Heart J. 2005 Feb;149(2):291-7 [PMID: 15846267]
  56. Br J Clin Pharmacol. 2013 Mar;75(3):677-96 [PMID: 22882425]
  57. Exerc Sport Sci Rev. 2016 Apr;44(2):53-60 [PMID: 26829247]
  58. Am J Physiol Heart Circ Physiol. 2019 Aug 1;317(2):H395-H404 [PMID: 31173499]
  59. J Appl Physiol (1985). 2023 Nov 1;135(5):1167-1175 [PMID: 37732374]
  60. Am J Hypertens. 2015 May;28(5):572-5 [PMID: 25359409]
  61. J Appl Physiol (1985). 2020 Apr 1;128(4):739-747 [PMID: 32134713]
  62. Br J Sports Med. 2012 Aug;46(10):753-8 [PMID: 21947813]
  63. Med Sci Sports Exerc. 2018 Jan;50(1):124-130 [PMID: 28817509]
  64. Am J Clin Nutr. 2018 Apr 1;107(4):504-522 [PMID: 29635489]
  65. Exerc Sport Sci Rev. 2017 Apr;45(2):116-123 [PMID: 28092297]
  66. Med Sci Sports Exerc. 2020 Mar;52(3):736-745 [PMID: 31524825]
  67. Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1109-16 [PMID: 19633208]
  68. J Phys Act Health. 2019 Sep 1;16(10):916-924 [PMID: 31476736]
  69. Hypertension. 2016 Oct;68(4):1011-20 [PMID: 27550922]
  70. BMC Womens Health. 2015 Aug 13;15:58 [PMID: 26271251]
  71. J Physiol. 2009 Aug 1;587(Pt 15):3885-97 [PMID: 19528246]
  72. J Clin Endocrinol Metab. 2013 Nov;98(11):4507-15 [PMID: 24092827]

Grants

  1. K23 DK131327/NIDDK NIH HHS

MeSH Term

Humans
Female
Nitrates
Dietary Supplements
Exercise
Antioxidants
Nitric Oxide
Postmenopause
Beta vulgaris
Double-Blind Method
Cross-Over Studies
Fruit and Vegetable Juices

Chemicals

Nitrates
Antioxidants
Nitric Oxide

Word Cloud

Created with Highcharts 10.0.0exercisefemalesvascularNOFMDsupplementationPMinorganicnitrateBRJhealthhigh-intensitycomparedimprovedfunctioneffectsacutebeetrootjuice=PLHIE005dilationtimecombinedintensities12placebo2experimentalMIEpostexerciseET-1increasedfindings<peakΔFMDacrossBRJ + HIEBRJ + CONmayflow-mediatedmenopauseMenopauseassociatedreducednitricoxidebioavailabilityAlthoughknownimprovebluntedestrogen-deficientpost-menopauseexamineddifferingwithoutParticipantstesteddouble-blindedblock-randomizeddesignconsuming∼13mmolformdaysvisitshtestingVisitsconsistedmeasuresevery30mincaloricallymatchedmoderate-intensitynonexercisecontrolCONBloodsampledrest5-minN-oxidesdecreasedunchangedconditionsΔflow-mediateddefinedlargestindividualparticipantpointsrevealedimprovementversusBRJ + MIEmediumconclusionpostmenopausalofferalternativeunwillingperformFuturestudiestestwhetherlong-termtraininghighcanenhancestudyexercise-inducedchangesmoderate-postmenopausesupplementingeithermeasuredNeitherPL + MIEPL + HIEsuggestbenefitintensity

Similar Articles

Cited By