Entropy driven cooperativity effect in multi-site drug optimization targeting SARS-CoV-2 papain-like protease.

Lili Duan, Bolin Tang, Song Luo, Danyang Xiong, Qihang Wang, Xiaole Xu, John Z H Zhang
Author Information
  1. Lili Duan: School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China. duanll@sdnu.edu.cn. ORCID
  2. Bolin Tang: School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
  3. Song Luo: School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
  4. Danyang Xiong: School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
  5. Qihang Wang: School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
  6. Xiaole Xu: School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
  7. John Z H Zhang: Faculty of Synthetic Biology and Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. john.zhang@nyu.edu.

Abstract

Papain-like protease (PLpro), a non-structural protein encoded by SARS-CoV-2, is an important therapeutic target. Regions 1 and 5 of an existing drug, GRL0617, can be optimized to produce cooperativity with PLpro binding, resulting in stronger binding affinity. This work investigated the origin of the cooperativity using molecular dynamics simulations combined with the interaction entropy (IE) method. The regions' improvement exhibits cooperativity by calculating the binding free energies between the complex of PLpro-inhibitor. The thermodynamic integration method further verified the cooperativity generated in the drug improvement. To further determine the specific source of cooperativity, enthalpy and entropy in the complexes were calculated using molecular mechanics/generalized Born surface area and IE. The results show that the entropic change is an important contributor to the cooperativity. Our study also identified residues P248, Q269, and T301 that play a significant role in cooperativity. The optimization of the inhibitor stabilizes these residues and minimizes the entropic loss, and the cooperativity observed in the binding free energy can be attributed to the change in the entropic contribution of these residues. Based on our research, the application of cooperativity can facilitate drug optimization, and provide theoretical ideas for drug development that leverage cooperativity by reducing the contribution of entropy through multi-locus binding.

Keywords

References

  1. J Phys Chem Lett. 2014 Nov 6;5(21):3863-3871 [PMID: 25400877]
  2. Nat Commun. 2021 Feb 2;12(1):743 [PMID: 33531496]
  3. Eur J Med Chem. 2022 Dec 15;244:114803 [PMID: 36209629]
  4. ACS Chem Neurosci. 2022 Nov 2;13(21):3126-3137 [PMID: 36278939]
  5. Annu Rev Biophys Biophys Chem. 1989;18:431-92 [PMID: 2660832]
  6. Mol Cell. 2016 May 19;62(4):572-85 [PMID: 27203180]
  7. Phys Rev Lett. 2011 Apr 22;106(16):168103 [PMID: 21599417]
  8. J Virol. 2005 Dec;79(24):15189-98 [PMID: 16306590]
  9. Sci Rep. 2016 Jun 01;6:27190 [PMID: 27249234]
  10. J Mol Biol. 2003 Jul 18;330(4):891-913 [PMID: 12850155]
  11. J Chem Inf Model. 2017 May 22;57(5):1112-1122 [PMID: 28406301]
  12. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  13. J Infect Dis. 2021 Jul 15;224(Supplement_1):S1-S21 [PMID: 34111271]
  14. J Phys Chem Lett. 2020 Jul 2;11(13):5373-5382 [PMID: 32543196]
  15. J Chem Inf Model. 2021 Jun 28;61(6):2844-2856 [PMID: 34014672]
  16. J Chem Theory Comput. 2018 Mar 13;14(3):1772-1780 [PMID: 29406753]
  17. J Chem Theory Comput. 2020 Jan 14;16(1):528-552 [PMID: 31714766]
  18. Sci Rep. 2019 Feb 28;9(1):3188 [PMID: 30816277]
  19. ACS Infect Dis. 2022 Mar 11;8(3):546-556 [PMID: 35133792]
  20. ACS Chem Neurosci. 2019 Sep 18;10(9):4151-4159 [PMID: 31436406]
  21. Biopolymers. 1996 Mar;38(3):305-20 [PMID: 8906967]
  22. J Med Virol. 2022 May;94(5):1825-1832 [PMID: 35023191]
  23. ACS Cent Sci. 2021 Jul 28;7(7):1245-1260 [PMID: 34341772]
  24. J Med Chem. 2022 Jan 13;65(1):876-884 [PMID: 34981929]
  25. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22 [PMID: 16581910]
  26. J Enzyme Inhib Med Chem. 2021 Dec;36(1):497-503 [PMID: 33491508]
  27. Rev Med Virol. 2023 Jan;33(1):e2340 [PMID: 35238422]
  28. Acta Pharm Sin B. 2021 Jan;11(1):237-245 [PMID: 32895623]
  29. ACS Infect Dis. 2022 May 13;8(5):1022-1030 [PMID: 35404564]
  30. J Phys Chem Lett. 2022 Jul 7;13(26):6064-6073 [PMID: 35758899]
  31. J Phys Chem Lett. 2021 Dec 16;12(49):11850-11857 [PMID: 34873910]
  32. Comput Biol Med. 2021 Apr;131:104295 [PMID: 33662683]
  33. Phys Chem Chem Phys. 2010 Apr 14;12(14):3491-500 [PMID: 20355290]
  34. Nature. 2020 Nov;587(7835):657-662 [PMID: 32726803]
  35. J Virol. 2010 May;84(9):4619-29 [PMID: 20181693]
  36. Nucleic Acids Res. 2023 Jan 6;51(D1):D546-D556 [PMID: 36200814]
  37. J Phys Chem Lett. 2015 Nov 5;6(21):4233-8 [PMID: 26722963]
  38. Emerg Microbes Infect. 2023 Dec;12(1):2164742 [PMID: 36591809]
  39. J Med Chem. 2022 Feb 24;65(4):2940-2955 [PMID: 34665619]
  40. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3852-3857 [PMID: 29581285]
  41. J Med Virol. 2022 Nov;94(11):5096-5102 [PMID: 35815524]
  42. J Am Chem Soc. 2016 May 4;138(17):5722-8 [PMID: 27058988]
  43. iScience. 2022 Oct 21;25(10):105254 [PMID: 36213008]
  44. Protein Sci. 2006 Mar;15(3):459-67 [PMID: 16452627]
  45. EMBO J. 2020 Sep 15;39(18):e106275 [PMID: 32845033]
  46. J Proteome Res. 2021 Jan 1;20(1):1015-1026 [PMID: 33350309]
  47. Nat Commun. 2023 Mar 28;14(1):1733 [PMID: 36977673]
  48. Chem Rev. 2019 Aug 28;119(16):9478-9508 [PMID: 31244000]
  49. J Phys Chem Lett. 2022 Sep 29;13(38):8893-8901 [PMID: 36126063]
  50. ACS Nano. 2020 Sep 22;14(9):11821-11830 [PMID: 32833435]
  51. Acc Chem Res. 2000 Dec;33(12):889-97 [PMID: 11123888]
  52. Nat Commun. 2021 Jan 20;12(1):488 [PMID: 33473130]
  53. Cell Res. 2020 Aug;30(8):670-677 [PMID: 32636454]
  54. Biochem J. 2015 Jun 1;468(2):215-26 [PMID: 25764917]
  55. Proteins. 2013 Apr;81(4):658-74 [PMID: 23184816]

Grants

  1. 11774207/National Natural Science Foundation of China
  2. 21933010/National Natural Science Foundation of China
  3. 22250710136/National Natural Science Foundation of China

MeSH Term

Humans
Entropy
SARS-CoV-2
COVID-19
Molecular Dynamics Simulation

Chemicals

papain-like protease, SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0cooperativitydrugbindingproteasecanentropyimprovementfreeentropicresiduesoptimizationcontributionPapain-likePLproSARS-CoV-2importantusingmolecularIEmethodchangeinhibitorenergyEntropynon-structuralproteinencodedtherapeutictargetRegions15existingGRL0617optimizedproduceresultingstrongeraffinityworkinvestigatedorigindynamicssimulationscombinedinteractionregions'exhibitscalculatingenergiescomplexPLpro-inhibitorthermodynamicintegrationverifiedgenerateddeterminespecificsourceenthalpycomplexescalculatedmechanics/generalizedBornsurfacearearesultsshowcontributorstudyalsoidentifiedP248Q269T301playsignificantrolestabilizesminimizeslossobservedattributedBasedresearchapplicationfacilitateprovidetheoreticalideasdevelopmentleveragereducingmulti-locusdriveneffectmulti-sitetargetingpapain-likeBindingCooperativityRegional

Similar Articles

Cited By