Zi-Hao Liu: Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Fei-Xiang Ma: Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Hong-Shuang Fan: Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Zheng-Qi Liu: Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Yue Du: Peng Cheng Laboratory, Shenzhen, 518055, China.
Liang Zhen: Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Cheng-Yan Xu: Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China. ORCID
It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm and stable discharging voltage plateau over 140 h.
K. Liu, J. Fu, Y. Lin, T. Luo, G. Ni, H. Li, Z. Lin, M. Liu, Nat. Commun. 2022, 13, 2075.
L. Jiao, J. Li, L. L. Richard, Q. Sun, T. Stracensky, E. Liu, M. T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D. A. Cullen, J. H. Park, M. Ferrandon, D. J. Myers, F. Jaouen, Q. Jia, Nat. Mater. 2021, 20, 1385.
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, J. Am. Chem. Soc. 2018, 140, 11594.
J. Li, M. T. Sougrati, A. Zitolo, J. M. Ablett, I. C. Oguz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A. Di Cicco, K. Kumar, L. Dubau, F. Maillard, G. Drazic, F. Jaouen, Nat. Catal. 2021, 4, 10.
M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594.
M. N. Islam, A. B. Mansoor Basha, V. O. Kollath, A. P. Soleymani, J. Jankovic, K. Karan, Nat. Commun. 2022, 13, 6157.
C. Liu, Z. Yu, F. She, J. Chen, F. Liu, J. Qu, J. M. Cairney, C. Wu, K. Liu, W. Yang, H. Zheng, Y. Chen, H. Li, L. Wei, Energy Environ. Sci. 2023, 16, 446.
Y. Lin, K. Liu, K. Chen, Y. Xu, H. Li, J. Hu, Y.-R. Lu, T.-S. Chan, X. Qiu, J. Fu, M. Liu, ACS Catal. 2021, 11, 6304.
C. Liu, H. Li, F. Liu, J. Chen, Z. Yu, Z. Yuan, C. Wang, H. Zheng, G. Henkelman, L. Wei, Y. Chen, J. Am. Chem. Soc. 2020, 142, 21861.
Z.-Q. Liu, X. Liang, F.-X. Ma, Y.-X. Xiong, G. Zhang, G. Chen, L. Zhen, C.-Y. Xu, Adv. Energy Mater. 2023, 13, 2203609.
S. Liu, C. Li, M. J. Zachman, Y. Zeng, H. Yu, B. Li, M. Wang, J. Braaten, J. Liu, H. M. Meyer, M. Lucero, A. J. Kropf, E. E. Alp, Q. Gong, Q. Shi, Z. Feng, H. Xu, G. Wang, D. J. Myers, J. Xie, D. A. Cullen, S. Litster, G. Wu, Nat. Energy 2022, 7, 652.
T. Marshall-Roth, N. J. Libretto, A. T. Wrobel, K. J. Anderton, M. L. Pegis, N. D. Ricke, T. V. Voorhis, J. T. Miller, Y. Surendranath, Nat. Commun. 2020, 11, 5283.
P. Zhang, K. Chen, J. Li, M. Wang, M. Li, Y. Liu, Y. Pan, Adv. Mater. 2023, 35, 2303243.
H.-F. Wang, L. Chen, M. Wang, Z. Liu, Q. Xu, Nano Lett. 2021, 21, 3640.
L. Jiao, R. Zhang, G. Wan, W. Yang, X. Wan, H. Zhou, J. Shui, S.-H. Yu, H.-L. Jiang, Nat. Commun. 2020, 11, 2831.
X. Zhang, Z. Zhu, Y. Tan, K. Qin, F.-X. Ma, J. Zhang, Chem. Commun. 2021, 57, 2049.
Y. Zhou, G. Chen, Q. Wang, D. Wang, X. Tao, T. Zhang, X. Feng, K. Müllen, Adv. Func. Mater. 2021, 31, 2102420.
L. Peng, C.-T. Hung, S. Wang, X. Zhang, X. Zhu, Z. Zhao, C. Wang, Y. Tang, W. Li, D. Zhao, J. Am. Chem. Soc. 2019, 141, 7073.
H. Zhang, O. Noonan, X. Huang, Y. Yang, C. Xu, L. Zhou, C. Yu, ACS Nano 2016, 10, 4579.
B. Y. Guan, L. Yu, X. W. D. Lou, Adv. Mater. 2016, 28, 9596.
F.-X. Ma, Z.-Q. Liu, G. Zhang, H.-S. Fan, Y. Du, L. Zhen, C.-Y. Xu, Small 2023, 19, 2207991.
F.-X. Ma, Z.-Q. Liu, G. Zhang, Y.-X. Xiong, M.-T. Zhang, L. Zheng, L. Zhen, C.-Y. Xu, Small 2022, 18, 2205033.
Y. Chen, Z. Li, Y. Zhu, D. Sun, X. Liu, L. Xu, Y. Tang, Adv. Mater. 2019, 31, 1806312.
A.-H. Lu, T. Sun, W.-C. Li, Q. Sun, F. Han, D.-H. Liu, Y. Guo, Angew. Chem., Int. Ed. 2011, 50, 11765.
J. Hou, T. Cao, F. Idrees, C. Cao, Nanoscale 2016, 8, 451.
A. B. Fuertes, P. Valle-Vigón, M. Sevilla, Chem. Commun. 2012, 48, 6124.
H. Wang, Y. Shao, S. Mei, Y. Lu, M. Zhang, J.-K. Sun, K. Matyjaszewski, M. Antonietti, J. Yuan, Chem. Rev. 2020, 120, 9363.
X. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao, H. Zhou, L. Yang, L. Fan, Y. Zhang, N. Zhang, Nat. Commun. 2023, 14, 291.
A. Han, W. Chen, S. Zhang, M. Zhang, Y. Han, J. Zhang, S. Ji, L. Zheng, Y. Wang, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, Adv. Mater. 2018, 30, 1706508.
M. Zhou, Y. Jiang, G. Wang, W. Wu, W. Chen, P. Yu, Y. Lin, J. Mao, L. Mao, Nat. Commun. 2020, 11, 3188.
Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen, Z. Zeng, M. Huang, H. Yang, B. Liu, S. J. Pennycook, P. Chen, Adv. Energy Mater. 2020, 10, 2002896.
W. Wang, Y. Wang, X. Wang, B. Jiang, H. Song, ACS Appl. Mater. Interfaces 2022, 14, 41912.
F.-X. Ma, G. Zhang, M. Wang, X. Liang, F. Lyu, X. Xiao, P. Wang, L. Zhen, J. Lu, L. Zheng, Y. Yang Li, C.-Y. Xu, J. Colloid Interface Sci. 2022, 620, 67.
Y. Pang, K. Wang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, ACS Catal. 2020, 10, 7434.
Z. Wang, Y. Zou, Y. Li, Y. Cheng, Small 2020, 16, 1907042.
O. Noonan, H. Zhang, H. Song, C. Xu, X. Huang, C. Yu, J. Mater. Chem. A 2016, 4, 9063.
K. Ai, Y. Liu, C. Ruan, L. Lu, G. M. Lu, Adv. Mater. 2013, 25, 998.
P. P. Ghimire, M. Jaroniec, J. Colloid Interface Sci. 2021, 584, 838.
H. Jia, Z. Sun, D. Jiang, S. Yang, P. Du, Inorg. Chem. Front. 2016, 3, 821.
Z. Zhang, J. Sun, F. Wang, L. Dai, Angew. Chem., Int. Ed. 2018, 57, 9038.
X. Ao, W. Zhang, Z. Li, J.-G. Li, L. Soule, X. Huang, W.-H. Chiang, H. M. Chen, C. Wang, M. Liu, X. C. Zeng, ACS Nano 2019, 13, 11853.
S.-N. Zhao, J.-K. Li, R. Wang, J. Cai, S.-Q. Zang, Adv. Mater. 2021, 34, 2107291.
Grants
52302233/National Natural Science Foundation of China
JCYJ20200109113212238/Shenzhen Science and Technology Innovation Committee
2021A1515111154/Basic and Applied Basic Research Foundation of Guangdong Province
2021QN02C900/Talent Recruitment Project of Guangdong Province