An "off-the-shelf" CD2 universal CAR-T therapy for T-cell malignancies.
Jingyu Xiang, Jessica M Devenport, Alun J Carter, Karl W Staser, Miriam Y Kim, Julie O' Neal, Julie K Ritchey, Michael P Rettig, Feng Gao, Garrett Rettig, Rolf Turk, Byung Ha Lee, Matthew L Cooper, John F DiPersio
Author Information
Jingyu Xiang: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA. ORCID
Jessica M Devenport: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Alun J Carter: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Karl W Staser: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Miriam Y Kim: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Julie O' Neal: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA. ORCID
Julie K Ritchey: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Michael P Rettig: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
Feng Gao: Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA.
Garrett Rettig: Integrated DNA Technologies, Coralville, IA, USA.
Rolf Turk: Integrated DNA Technologies, Coralville, IA, USA. ORCID
Byung Ha Lee: NeoImmuneTech, Inc., Rockville, MD, USA. ORCID
Matthew L Cooper: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA. matthewcooper@wustl.edu. ORCID
John F DiPersio: Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA. jdipersi@wustl.edu. ORCID
T-cell malignancies are associated with frequent relapse and high morbidity, which is partly due to the lack of effective or targeted treatment options. To broaden the use of CAR-T cells in pan T-cell malignancies, we developed an allogeneic "universal" CD2-targeting CAR-T cell (UCART2), in which the CD2 antigen is deleted to prevent fratricide, and the T-cell receptor is removed to prevent GvHD. UCART2 demonstrated efficacy against T-ALL and CTCL and prolonged the survival of tumor-engrafted NSG mice in vivo. To evaluate the impact of CD2 on CAR-T function, we generated CD19 CAR-T cells (UCART19) with or without CD2 deletion, single-cell secretome analysis revealed that CD2 deletion in UCART19 reduced frequencies of the effector cytokines (Granzyme-B and IFN-��). We also observed that UCART19��CD2 had reduced anti-tumor efficacy compared to UCART19 in a CD19+NALM6 xenograft model. Of note is that the reduced efficacy resulting from CD2 deletion was reversed when combined with rhIL-7-hyFc, a long-acting recombinant human interleukin-7. Treatment with rhIL-7-hyFc prolonged UCART2 persistence and increased survival in both the tumor re-challenge model and primary patient T-ALL model in vivo. Together, these data suggest that allogeneic fratricide-resistant UCART2, in combination with rhIL-7-hyFc, could be a suitable approach for treating T-cell malignancies.
References
Vadillo E, Dorantes-Acosta E, Pelayo R, Schnoor M. T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev. 2018;32:36���51.
[DOI: 10.1016/j.blre.2017.08.006]
Alcantara M, Tesio M, June CH, Houot R. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia. 2018;32:2307���15.
[DOI: 10.1038/s41375-018-0285-8]
Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An ���off-the-shelf��� fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018;32:1970���83.
[DOI: 10.1038/s41375-018-0065-5]
Gomes-Silva D, Srinivasan M, Sharma S, Lee CM, Wagner DL, Davis TH, et al. CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood. 2017;130:285���96.
[DOI: 10.1182/blood-2017-01-761320]
Png YT, Vinanica N, Kamiya T, Shimasaki N, Coustan-Smith E, Campana D. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies. Blood Adv. 2017;1:2348���60.
[DOI: 10.1182/bloodadvances.2017009928]
Hu Y, Zhou Y, Zhang M, Zhao H, Wei G, Ge W, et al. Genetically modified CD7-targeting allogeneic CAR-T cell therapy with enhanced efficacy for relapsed/refractory CD7-positive hematological malignancies: a phase I clinical study. Cell Res. 2022;32:995���1007.
Kobayashi S, Nakano K, Watanabe E, Ishigaki T, Ohno N, Yuji K, et al. CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-I-infected cells in adult T-cell leukemia/lymphoma. Clin Cancer Res. 2014;20:2851���61.
[DOI: 10.1158/1078-0432.CCR-13-3169]
Rappl G, Muche JM, Abken H, Sterry W, Tilgen W, Ugurel S, et al. CD4(+)CD7(���) T cells compose the dominant T-cell clone in the peripheral blood of patients with Sezary syndrome. J Am Acad Dermatol. 2001;44:456���61.
[DOI: 10.1067/mjd.2001.110900]
Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W, et al. Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-in-Human, Phase I Trial. J Clin Oncol. 2021;39:3340���51.
[DOI: 10.1200/JCO.21.00389]
Zhang M, Chen D, Fu X, Meng H, Nan F, Sun Z, et al. Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR T-cell Therapy for Patients with Relapsed and Refractory T-cell Acute Lymphoblastic Leukemia/Lymphoma. Clin Cancer Res. 2022;28:2830���43.
[DOI: 10.1158/1078-0432.CCR-21-4097]
Gorczyca W, Weisberger J, Liu Z, Tsang P, Hossein M, Wu CD, et al. An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry. 2002;50:177���90.
[DOI: 10.1002/cyto.10003]
Loza MJ, Luppi P, Kiefer K, Martin ES, Szczytkowski JL, Perussia B. Human peripheral CD2-/lo T cells: an extrathymic population of early differentiated, developing T cells. Int Immunol. 2005;17:1213���25.
[DOI: 10.1093/intimm/dxh298]
Li B, Lu Y, Zhong MC, Qian J, Li R, Davidson D, et al. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci Immunol. 2022;7:eabn6373.
[DOI: 10.1126/sciimmunol.abn6373]
Kaizuka Y, Douglass AD, Vardhana S, Dustin ML, Vale RD. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J Cell Biol. 2009;185:521���34.
[DOI: 10.1083/jcb.200809136]
DiPersio JF, Staser K, Cooper M. Immunotherapy for T-Cell ALL and T-Cell NHL. Clin Lymphoma Myeloma Leuk. 2020;20:S56���8.
[DOI: 10.1016/S2152-2650(20)30462-6]
Kim MY, Jayasinghe R, Devenport JM, Ritchey JK, Rettig MP, O���Neal J, et al. A long-acting interleukin-7, rhIL-7-hyFc, enhances CAR T cell expansion, persistence, and anti-tumor activity. Nat Commun. 2022;13:3296.
[DOI: 10.1038/s41467-022-30860-0]
Dustin ML, Springer TA. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu Rev Immunol. 1991;9:27���66.
[DOI: 10.1146/annurev.iy.09.040191.000331]
Majzner RG, Frank MJ, Mount C, Tousley A, Kurtz DM, Sworder B, et al. CD58 Aberrations Limit Durable Responses to CD19 CAR in Large B Cell Lymphoma Patients Treated with Axicabtagene Ciloleucel but Can be Overcome through Novel CAR Engineering. Blood. 2020;136:53���4.
[DOI: 10.1182/blood-2020-139605]
Rossi J, Paczkowski P, Shen Y-W, Morse K, Flynn B, Kaiser A, et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood. 2018;132:804���14.
[DOI: 10.1182/blood-2018-01-828343]
Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139.
[DOI: 10.1126/scitranslmed.aac5415]
Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl J Med. 2014;371:1507���17.
[DOI: 10.1056/NEJMoa1407222]
Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol : Off J Am Soc Clin Oncol. 2015;33:540���9.
[DOI: 10.1200/JCO.2014.56.2025]
Depil S, Duchateau P, Grupp SA, Mufti G, Poirot L. Off-the-shelf��� allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 2020;19:185���99.
[DOI: 10.1038/s41573-019-0051-2]
Mamonkin M, Rouce RH, Tashiro H, Brenner MK. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood. 2015;126:983���92.
[DOI: 10.1182/blood-2015-02-629527]
Dai Z, Mu W, Zhao Y, Jia X, Liu J, Wei Q, et al. The rational development of CD5-targeting biepitopic CARs with fully human heavy-chain-only antigen recognition domains. Mol Ther. 2021;29:2707���22.
[DOI: 10.1016/j.ymthe.2021.07.001]
Cooper ML, DiPersio JF. Chimeric antigen receptor T cells (CAR-T) for the treatment of T-cell malignancies. Best Pr Res Clin Haematol. 2019;32:101097.
[DOI: 10.1016/j.beha.2019.101097]
Lu P, Liu Y, Yang J, Zhang X, Yang X, Wang H, et al. Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood. 2022;140:321���34.
[PMID: 35500125]
Watanabe N, Mo F, Zheng R, Ma R, Bray VC, van Leeuwen DG, et al. Feasibility and preclinical efficacy of CD7-unedited CD7 CAR T cells for T cell malignancies. Mol Ther. 2023;31:24���34.
[DOI: 10.1016/j.ymthe.2022.09.003]
Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu MF, Ivanova A, et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J Clin Oncol. 2020;38:3794���804.
[DOI: 10.1200/JCO.20.01342]
Diorio C, Murray R, Naniong M, Barrera L, Camblin A, Chukinas J, et al. Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood. 2022;140:619���29.
[DOI: 10.1182/blood.2022015825]
Li S, Wang X, Yuan Z, Liu L, Luo L, Li Y, et al. Eradication of T-ALL Cells by CD7-targeted Universal CAR-T Cells and Initial Test of Ruxolitinib-based CRS Management. Clin Cancer Res. 2021;27:1242���6.
[DOI: 10.1158/1078-0432.CCR-20-1271]
Kim MY, Cooper ML, Jacobs MT, Ritchey JK, Hollaway J, Fehniger TA, et al. CD7-deleted hematopoietic stem cells can restore immunity after CAR T cell therapy. JCI Insight 2021;6:e149819.
Yan X, Chen D, Ma X, Wang Y, Guo Y, Wei J, et al. CD58 loss in tumor cells confers functional impairment of CAR T cells. Blood Adv. 2022;6:5844���56.
[DOI: 10.1182/bloodadvances.2022007891]
Nam HJ, Song MY, Choi DH, Yang SH, Jin HT, Sung YC. Marked enhancement of antigen-specific T-cell responses by IL-7-fused nonlytic, but not lytic, Fc as a genetic adjuvant. Eur J Immunol. 2010;40:351���8.
[DOI: 10.1002/eji.200939271]
Lee SW, Choi D, Heo M, Shin EC, Park SH, Kim SJ, et al. hIL-7-hyFc, A Long-Acting IL-7, Increased Absolute Lymphocyte Count in Healthy Subjects. Clin Transl Sci. 2020;13:1161���9.
[DOI: 10.1111/cts.12800]
Ghobadi A, Budde LE, Galal A, Stermer K, Bierly A, Ferrando-Martinez S, et al. A Phase 1b Dose Expansion Study Evaluating Safety, Preliminary Anti-Tumor Activity, and Accelerated T Cell Reconstitution with NT-I7 (Efineptakin Alfa), a Long-Acting Human IL-7, Administered Following Tisagenlecleucel in Subjects with Relapsed/Refractory Large B-Cell Lymphoma. Blood. 2022;140:10366���7.
[DOI: 10.1182/blood-2022-159504]
Pellegrini M, Calzascia T, Elford AR, Shahinian A, Lin AE, Dissanayake D, et al. Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med. 2009;15:528���36.
[DOI: 10.1038/nm.1953]
Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36:346���51.
[DOI: 10.1038/nbt.4086]
Bradley LM, Haynes L, Swain SL. IL-7: maintaining T-cell memory and achieving homeostasis. Trends Immunol. 2005;26:172���6.
[DOI: 10.1016/j.it.2005.01.004]
Barata JT, Keenan TD, Silva A, Nadler LM, Boussiotis VA, Cardoso AA. Common gamma chain-signaling cytokines promote proliferation of T-cell acute lymphoblastic leukemia. Haematologica. 2004;89:1459���67.
[PMID: 15590396]
Oliveira ML, Akkapeddi P, Ribeiro D, Melao A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: An update. Adv Biol Regul. 2019;71:88���96.
[DOI: 10.1016/j.jbior.2018.09.012]