manymome: An R package for computing the indirect effects, conditional effects, and conditional indirect effects, standardized or unstandardized, and their bootstrap confidence intervals, in many (though not all) models.

Shu Fai Cheung, Sing-Hang Cheung
Author Information
  1. Shu Fai Cheung: Department of Psychology, Faculty of Social Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China. sfcheung@um.edu.mo. ORCID
  2. Sing-Hang Cheung: Department of Psychology, The University of Hong Kong, Hong Kong SAR, China. ORCID

Abstract

Mediation, moderation, and moderated mediation are common in behavioral research models. Several tools are available for estimating indirect effects, conditional effects, and conditional indirect effects and forming their confidence intervals. However, there are no simple-to-use tools that can appropriately form the bootstrapping confidence interval for standardized conditional indirect effects. Moreover, some tools are restricted to a limited type of models. We developed an R package, manymome, which can be used to estimate and form confidence intervals for indirect effects, conditional effects, and conditional indirect effects, standardized or not, using a two-step approach: model parameters are estimated either by structural equation modeling using lavaan or by a set of linear regression models using lm, and then the coefficients are used to compute the requested effects and form confidence intervals. It can be used when there are missing data if the model is fitted by structural equation modeling. There are only a few limitations on some aspects of a model, and no inherent limitations on the number of predictors, the number of independent variables, or the number of moderators and mediators. The goal is to have a tool that allows researchers to focus on model fitting first and worry about estimating the effects later. The use of the model is illustrated using a few numerical examples, and the limitations of the package are discussed.

Keywords

References

  1. Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. SAGE Publication.
  2. Alwin, D. F., & Hauser, R. M. (1975). The decomposition of effects in path analysis. American Sociological Review, 40(1), 37. https://doi.org/10.2307/2094445 [DOI: 10.2307/2094445]
  3. Amos Development Corporation. (2021). User-defined estimands. Retrieved from http://amosdevelopment.com/features/user-defined/index.html on August 8, 2022 .
  4. Asparouhov, A., & Muth��n, B. (2021). Bootstrap p-value computation. Retrieved March 8, 2023, from https://www.statmodel.com/download/FAQ-Bootstrap%20-%20Pvalue.pdf
  5. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 243���277). Lawrence Erlbaum Associates.
  6. Arbuckle, J. L. (2021). IBM�� SPSS�� Amos��� 28 user���s guide.
  7. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173���1182. [DOI: 10.1037/0022-3514.51.6.1173]
  8. Ben-Shachar, M. S. (2022). lavaan2emmeans. A function in the semTools package (T. D. Jorgensen, S. Pornprasertmanit, A. M. Schoemann, & Y. Rosseel), version 0.5-6.
  9. Chamorro-Premuzic, T., & Furnham, A. (2008). Personality, intelligence and approaches to learning as predictors of academic performance. Personality and Individual Differences, 44(7), 1596���1603. https://doi.org/10.1016/j.paid.2008.01.003 [DOI: 10.1016/j.paid.2008.01.003]
  10. Cheung, G. W., Cooper-Thomas, H. D., Lau, R. S., & Wang, L. C. (2021). Testing moderation in business and psychological studies with latent moderated structural equations. Journal of Business and Psychology, 36(6), 1009���1033. https://doi.org/10.1007/s10869-020-09717-0 [DOI: 10.1007/s10869-020-09717-0]
  11. Cheung, M. W.-L. (2009). Comparison of methods for constructing confidence intervals of standardized indirect effects. Behavior Research Methods, 41(2), 425���438. https://doi.org/10.3758/BRM.41.2.425 [DOI: 10.3758/BRM.41.2.425]
  12. Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022). Improving an old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502���505. https://doi.org/10.1037/hea0001188 [DOI: 10.1037/hea0001188]
  13. Craig, C. C. (1936). On the frequency function of xy. The Annals of Mathematical Statistics, 7(1), 1���15. https://doi.org/10.1214/aoms/1177732541 [DOI: 10.1214/aoms/1177732541]
  14. Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. Chapman & Hall/CRC.
  15. Enders, C. K. (2022). Applied missing data analysis (2 ed.). The Guilford Press.
  16. Falk, C. F. (2018). Are robust standard errors the best approach for interval estimation with nonnormal data in structural equation modeling? Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 244���266. https://doi.org/10.1080/10705511.2017.1367254 [DOI: 10.1080/10705511.2017.1367254]
  17. Friedrich, R. J. (1982). In defense of multiplicative terms in multiple regression equations. American Journal of Political Science, 26(4), 797���833. https://doi.org/10.2307/2110973
  18. Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 1���22. https://doi.org/10.1080/00273171.2014.962683 [DOI: 10.1080/00273171.2014.962683]
  19. Hayes, A. F. (2018). Partial, conditional, and moderated moderated mediation: Quantification, inference, and interpretation. Communication Monographs, 85(1), 4���40. https://doi.org/10.1080/03637751.2017.1352100 [DOI: 10.1080/03637751.2017.1352100]
  20. Hayes, A. F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (3 ed.). The Guilford Press.
  21. Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2022). semTools: Useful tools for structural equation modeling. R package version 0.5-6. Retrieved May 13, 2022, from https://CRAN.R-project.org/package=semTools
  22. Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2(3), 196���217. https://doi.org/10.1207/s15327957pspr0203_4 [DOI: 10.1207/s15327957pspr0203_4]
  23. Kline, R. B. (2023). Principles and practice of structural equation modeling (5th ed.). The Guilford Press.
  24. Kwan, J. L. Y., & Chan, W. (2018). Variable system: An alternative approach for the analysis of mediated moderation. Psychological Methods, 23(2), 262���277. https://doi.org/10.1037/met0000160 [DOI: 10.1037/met0000160]
  25. Lenth, R. V. (2023). emmeans: Estimated marginal means, aka least-squares means. R package version, 1.8.5. Retrieved March 8, 2023, from  https://CRAN.R-project.org/package=emmeans
  26. Miles, J. N. V., Kulesza, M., Ewing, B., Shih, R. A., Tucker, J. S., & D���Amico, E. J. (2015). Moderated mediation analysis: An illustration using the association of gender with delinquency and mental health. Journal of Criminal Psychology, 5(2), 99���123. https://doi.org/10.1108/JCP-02-2015-0010 [DOI: 10.1108/JCP-02-2015-0010]
  27. Mio��evi��, M., O���Rourke, H. P., MacKinnon, D. P., & Brown, H. C. (2018). Statistical properties of four effect-size measures for mediation models. Behavior Research Methods, 50(1), 285���301. https://doi.org/10.3758/s13428-017-0870-1 [DOI: 10.3758/s13428-017-0870-1]
  28. Muth��n, L. K., & Muth��n, B. O. (2017). Mplus 8 user���s guide.
  29. Ng, J. C. K., & Chan, W. (2020). Latent moderation analysis: A factor score approach. Structural Equation Modeling: A Multidisciplinary Journal, 27(4), 629���648. https://doi.org/10.1080/10705511.2019.1664304 [DOI: 10.1080/10705511.2019.1664304]
  30. Pek, J., & MacCallum, R. (2011). Sensitivity analysis in structural equation models: Cases and their influence. Multivariate Behavioral Research, 46(2), 202���228. https://doi.org/10.1080/00273171.2011.561068 [DOI: 10.1080/00273171.2011.561068]
  31. Pesigan, I. J. A., & Cheung, S. F. (2020). SEM-based methods to form confidence intervals for indirect effect: Still applicable given nonnormality, under certain conditions. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.571928
  32. Pesigan, I. J. A., & Cheung, S. F. (2023). Monte Carlo confidence intervals for the indirect effect with missing data. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02114-4
  33. Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42(1), 185���227. https://doi.org/10.1080/00273170701341316 [DOI: 10.1080/00273170701341316]
  34. Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect effects. Communication Methods and Measures, 6(2), 77���98. https://doi.org/10.1080/19312458.2012.679848 [DOI: 10.1080/19312458.2012.679848]
  35. R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/
  36. Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2). Retrieved April 12, 2013, from http://www.jstatsoft.org/v48/i02/paper
  37. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Wiley. [DOI: 10.1002/9780470316696]
  38. Scott, H., & Woods, H. C. (2018). Fear of missing out and sleep: Cognitive behavioural factors in adolescents��� nighttime social media use. Journal of Adolescence, 68(1), 61���65. https://doi.org/10.1016/j.adolescence.2018.07.009 [DOI: 10.1016/j.adolescence.2018.07.009]
  39. Schoemann, A. M., & Jorgensen, T. D. (2021). Testing and interpreting latent variable interactions using the semTools package. Psych, 3(3), Article 3. https://doi.org/10.3390/psych3030024 [DOI: 10.3390/psych3030024]
  40. Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290. https://doi.org/10.2307/270723 [DOI: 10.2307/270723]
  41. Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5), 1���38. https://doi.org/10.18637/jss.v059.i05 [DOI: 10.18637/jss.v059.i05]
  42. Van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Taylor and Francis Group: CRC Press.
  43. Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670���690. https://doi.org/10.1007/s11336-011-9224-6 [DOI: 10.1007/s11336-011-9224-6]

MeSH Term

Humans
Models, Statistical
Confidence Intervals
Software
Data Interpretation, Statistical
Behavioral Research
Linear Models

Word Cloud

Created with Highcharts 10.0.0effectsindirectconditionalconfidencemodelmodelsintervalsusingtoolscanformstandardizedpackageusedequationmodelinglimitationsnumberMediationestimatingRstructuraldatamoderationmoderatedmediationcommonbehavioralresearchSeveralavailableformingHoweversimple-to-useappropriatelybootstrappingintervalMoreoverrestrictedlimitedtypedevelopedmanymomeestimatetwo-stepapproach:parametersestimatedeitherlavaansetlinearregressionlmcoefficientscomputerequestedmissingfittedaspectsinherentpredictorsindependentvariablesmoderatorsmediatorsgoaltoolallowsresearchersfocusfittingfirstworrylateruseillustratednumericalexamplesdiscussedmanymome:computingunstandardizedbootstrapmanythoughBootstrappingConditionaleffectMissingModerationRegressionStructural

Similar Articles

Cited By (2)