A hybrid forecasting technique for infection and death from the mpox virus.

Hasnain Iftikhar, Muhammad Daniyal, Moiz Qureshi, Kassim Tawaiah, Richard Kwame Ansah, Jonathan Kwaku Afriyie
Author Information
  1. Hasnain Iftikhar: Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan.
  2. Muhammad Daniyal: Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan. ORCID
  3. Moiz Qureshi: Department of Statistics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Pakistan.
  4. Kassim Tawaiah: Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana. ORCID
  5. Richard Kwame Ansah: Department of Mathematics and Statistics, University of Energy and Natural Resources, Sunyani, Ghana.
  6. Jonathan Kwaku Afriyie: Department of Statistics and Actuarial Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Abstract

Objectives: The rising of new cases and death counts from the mpox virus (MPV) is alarming. In order to mitigate the impact of the MPV it is essential to have information of the virus's future position using more precise time series and stochastic models. In this present study, a hybrid forecasting system has been developed for new cases and death counts for MPV infection using the world daily cumulative confirmed and death series.
Methods: The original cumulative series was decomposed into new two subseries, such as a trend component and a stochastic series using the Hodrick-Prescott filter. To assess the efficacy of the proposed models, a comparative analysis with several widely recognized benchmark models, including auto-regressive (AR) model, auto-regressive moving average (ARMA) model, non-parametric auto-regressive (NPAR) model and artificial neural network (ANN), was performed.
Results: The introduction of two novel hybrid models, and , which demonstrated superior performance compared to all other models, as evidenced by their remarkable results in key performance indicators such as root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE), is a significant advancement in disease prediction.
Conclusion: The new models developed can be implemented in forecasting other diseases in the future. To address the current situation effectively, governments and stakeholders must implement significant changes to ensure strict adherence to standard operating procedures (SOPs) by the public. Given the anticipated continuation of increasing trends in the coming days, these measures are essential for mitigating the impact of the outbreak.

Keywords

References

  1. Int J Environ Res Public Health. 2022 Nov 24;19(23): [PMID: 36497712]
  2. Lancet Digit Health. 2022 Aug;4(8):e569-e571 [PMID: 35811294]
  3. Diagnostics (Basel). 2023 Mar 31;13(7): [PMID: 37046528]
  4. Epidemics. 2018 Sep;24:26-33 [PMID: 29506911]
  5. Chaos Solitons Fractals. 2020 Jun;135:109866 [PMID: 32395038]
  6. BMC Med Inform Decis Mak. 2013 May 02;13:56 [PMID: 23638635]
  7. Ann Oper Res. 2022 Dec 25;:1-25 [PMID: 36591406]
  8. Trop Med Infect Dis. 2022 Dec 08;7(12): [PMID: 36548679]
  9. Vaccines (Basel). 2023 Jan 19;11(2): [PMID: 36851107]
  10. PeerJ. 2020 Jun 22;8:e9272 [PMID: 32607280]
  11. Lancet Infect Dis. 2020 May;20(5):553-558 [PMID: 32171059]
  12. J Med Virol. 2023 Feb;95(2):e28534 [PMID: 36708091]
  13. Diagnostics (Basel). 2023 May 31;13(11): [PMID: 37296775]
  14. Lancet Microbe. 2023 Apr;4(4):e277-e283 [PMID: 36898398]
  15. Eur Phys J Plus. 2023;138(2):138 [PMID: 36785810]
  16. MMWR Morb Mortal Wkly Rep. 2022 Sep 02;71(35):1131-1135 [PMID: 36048619]
  17. BMC Med. 2023 Jan 16;21(1):19 [PMID: 36647108]
  18. J Infect. 2023 Mar;86(3):256-308 [PMID: 36577479]
  19. Infect Drug Resist. 2020 Mar 24;13:867-880 [PMID: 32273731]
  20. One Health. 2023 Jun;16:100540 [PMID: 37138928]
  21. Expert Syst. 2022 Aug 02;:e13105 [PMID: 36245831]
  22. SN Comput Sci. 2021;2(5):384 [PMID: 34308367]
  23. Int J Forecast. 2022 Apr-Jun;38(2):439-452 [PMID: 33311822]
  24. Acta Trop. 1988 Dec;45(4):297-307 [PMID: 2907258]
  25. Infect Drug Resist. 2021 May 25;14:1941-1955 [PMID: 34079304]
  26. Res Rep Urol. 2022 Nov 21;14:415-421 [PMID: 36438435]
  27. J Clin Med. 2022 Nov 04;11(21): [PMID: 36362783]
  28. Diagnostics (Basel). 2023 May 05;13(9): [PMID: 37175030]
  29. Jpn J Infect Dis. 2010 Jul;63(4):264-70 [PMID: 20657066]

Word Cloud

Created with Highcharts 10.0.0modelsseriesnewdeathhybridforecastingmpoxvirusMPVusingauto-regressivemodelmeanerrorcasescountsimpactessentialfuturetimestochasticdevelopedinfectioncumulativetwofilterperformanceabsolutesignificantObjectives:risingalarmingordermitigateinformationvirus'spositionprecisepresentstudysystemworlddailyconfirmedMethods:originaldecomposedsubseriestrendcomponentHodrick-PrescottassessefficacyproposedcomparativeanalysisseveralwidelyrecognizedbenchmarkincludingARmovingaverageARMAnon-parametricNPARartificialneuralnetworkANNperformedResults:introductionnoveldemonstratedsuperiorcomparedevidencedremarkableresultskeyindicatorsrootsquareRMSEMAEpercentageMAPEadvancementdiseasepredictionConclusion:canimplementeddiseasesaddresscurrentsituationeffectivelygovernmentsstakeholdersmustimplementchangesensurestrictadherencestandardoperatingproceduresSOPspublicGivenanticipatedcontinuationincreasingtrendscomingdaysmeasuresmitigatingoutbreaktechniqueHodrick–Prescottdecomposition

Similar Articles

Cited By