C-type lectin receptor expression is a hallmark of neutrophils infiltrating the skin in epidermolysis bullosa acquisita.

Christian F Guerrero-Juarez, Paul Schilf, Jing Li, Maria Paula Zappia, Lei Bao, Payal M Patel, Jenny Gieseler-Tillmann, Sripriya Murthy, Connor Cole, Maria Sverdlov, Maxim V Frolov, Takashi Hashimoto, Norito Ishii, Thomas Rülicke, Katja Bieber, Ralf J Ludwig, Christian D Sadik, Kyle T Amber
Author Information
  1. Christian F Guerrero-Juarez: Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL, United States.
  2. Paul Schilf: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  3. Jing Li: Department of Dermatology, Rush University Medical Center, Chicago, IL, United States.
  4. Maria Paula Zappia: Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.
  5. Lei Bao: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  6. Payal M Patel: Department of Dermatology, Rush University Medical Center, Chicago, IL, United States.
  7. Jenny Gieseler-Tillmann: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  8. Sripriya Murthy: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  9. Connor Cole: Department of Dermatology, Rush University Medical Center, Chicago, IL, United States.
  10. Maria Sverdlov: Research Histology Core, University of Illinois at Chicago, Chicago, IL, United States.
  11. Maxim V Frolov: Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.
  12. Takashi Hashimoto: Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
  13. Norito Ishii: Department of Dermatology, Kurume University School of Medicine, and Kurume University Institute of Cutaneous Cell Biology, Kurume, Japan.
  14. Thomas Rülicke: Department of Biomedical Sciences and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria.
  15. Katja Bieber: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  16. Ralf J Ludwig: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  17. Christian D Sadik: Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.
  18. Kyle T Amber: Department of Dermatology, Rush University Medical Center, Chicago, IL, United States.

Abstract

Introduction: Inflammatory epidermolysis bullosa acquisita (EBA) is characterized by a neutrophilic response to anti-type VII collagen (COL7) antibodies resulting in the development of skin inflammation and blistering. The antibody transfer model of EBA closely mirrors this EBA phenotype.
Methods: To better understand the changes induced in neutrophils upon recruitment from peripheral blood into lesional skin in EBA, we performed single-cell RNA-sequencing of whole blood and skin dissociate to capture minimally perturbed neutrophils and characterize their transcriptome.
Results: Through this approach, we identified clear distinctions between circulating activated neutrophils and intradermal neutrophils. Most strikingly, the gene expression of multiple C-type lectin receptors, which have previously been reported to orchestrate host defense against fungi and select bacteria, were markedly dysregulated. After confirming the upregulation of , , and in experimental EBA as well as in lesional skin from patients with inflammatory EBA, we performed functional studies in globally deficient and mice as well as in neutrophil-specific mice. Deficiency in these genes did not reduce disease in the EBA model.
Discussion: Collectively, our results suggest that while the upregulation of , , and is a hallmark of activated dermal neutrophil populations, their individual contribution to the pathogenesis of EBA is dispensable.

Keywords

References

  1. J Immunol. 2015 Feb 1;194(3):1211-24 [PMID: 25527787]
  2. BMC Immunol. 2016 Jan 05;17:1 [PMID: 26727976]
  3. Rheumatology (Oxford). 2010 Sep;49(9):1618-31 [PMID: 20338884]
  4. Semin Immunol. 2018 Jun;37:21-29 [PMID: 29602515]
  5. Infect Immun. 2014 Mar;82(3):1064-73 [PMID: 24343653]
  6. Int J Mol Sci. 2021 Jan 20;22(3): [PMID: 33498298]
  7. PLoS Pathog. 2019 Nov 6;15(11):e1008096 [PMID: 31693704]
  8. Clin Sci (Lond). 1998 May;94(5):461-71 [PMID: 9682667]
  9. Front Immunol. 2020 Feb 18;11:251 [PMID: 32133013]
  10. Biomedicines. 2022 Apr 15;10(4): [PMID: 35453656]
  11. Front Immunol. 2022 Nov 25;13:1038134 [PMID: 36505410]
  12. Autoimmun Rev. 2019 Aug;18(8):786-795 [PMID: 31181325]
  13. JCI Insight. 2019 Aug 8;4(15): [PMID: 31391346]
  14. J Invest Dermatol. 2017 May;137(5):1104-1113 [PMID: 28108297]
  15. J Exp Med. 2011 Mar 14;208(3):593-604 [PMID: 21357742]
  16. FEBS Lett. 2011 Jun 23;585(12):1748-52 [PMID: 21570975]
  17. Immunol Lett. 2011 Apr 30;136(1):1-12 [PMID: 20934454]
  18. Infect Immun. 2011 Jun;79(6):2470-80 [PMID: 21422180]
  19. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  20. Int Immunol. 2018 May 24;30(6):233-239 [PMID: 29726997]
  21. Curr Protoc Pharmacol. 2019 Mar;84(1):e55 [PMID: 30786171]
  22. Mucosal Immunol. 2014 May;7(3):558-67 [PMID: 24129160]
  23. Nucleic Acids Res. 2019 Jan 8;47(D1):D33-D38 [PMID: 30204897]
  24. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  25. Br J Dermatol. 2017 Dec;177(6):e321-e322 [PMID: 28369663]
  26. Bio Protoc. 2020 Aug 20;10(16):e3716 [PMID: 33659380]
  27. Eur J Immunol. 2011 Feb;41(2):276-81 [PMID: 21267996]
  28. Cell Host Microbe. 2015 Feb 11;17(2):252-9 [PMID: 25674984]
  29. J Immunol. 2015 Sep 1;195(5):1945-54 [PMID: 26202985]
  30. Cell Syst. 2019 Apr 24;8(4):281-291.e9 [PMID: 30954476]
  31. J Pathol. 2007 May;212(1):56-65 [PMID: 17380558]
  32. Front Immunol. 2018 Feb 15;9:227 [PMID: 29497419]
  33. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  34. Int Immunopharmacol. 2014 Feb;18(2):228-35 [PMID: 24368122]
  35. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  36. Nat Immunol. 2020 Sep;21(9):1119-1133 [PMID: 32719519]
  37. J Leukoc Biol. 2013 Sep;94(3):393-8 [PMID: 23709686]
  38. Blood. 2014 May 15;123(20):3200-7 [PMID: 24532804]
  39. Front Med (Lausanne). 2019 Jan 10;5:362 [PMID: 30687710]
  40. Bioinformatics. 2018 Jun 15;34(12):2077-2086 [PMID: 29415263]
  41. Sci Rep. 2016 Dec 05;6:38357 [PMID: 27917914]
  42. Nat Immunol. 2014 Feb;15(2):143-51 [PMID: 24362892]
  43. Nat Methods. 2016 Mar;13(3):241-4 [PMID: 26780092]
  44. Front Immunol. 2018 Feb 15;9:249 [PMID: 29497423]
  45. J Allergy Clin Immunol. 2020 Apr;145(4):1145-1147 [PMID: 32272983]
  46. Front Cell Infect Microbiol. 2020 Dec 14;10:595301 [PMID: 33425780]

Grants

  1. R21 OD030057/NIH HHS

MeSH Term

Humans
Animals
Mice
Epidermolysis Bullosa Acquisita
Neutrophils
Autoantibodies
Skin
Blister

Chemicals

Autoantibodies

Word Cloud

Created with Highcharts 10.0.0EBAskinneutrophilsepidermolysisbullosaacquisitaC-typelectinmodelbloodlesionalperformedactivatedexpressionupregulationwellmicehallmarkneutrophilreceptorIntroduction:Inflammatorycharacterizedneutrophilicresponseanti-typeVIIcollagenCOL7antibodiesresultingdevelopmentinflammationblisteringantibodytransfercloselymirrorsphenotypeMethods:betterunderstandchangesinduceduponrecruitmentperipheralsingle-cellRNA-sequencingwholedissociatecaptureminimallyperturbedcharacterizetranscriptomeResults:approachidentifiedcleardistinctionscirculatingintradermalstrikinglygenemultiplereceptorspreviouslyreportedorchestratehostdefensefungiselectbacteriamarkedlydysregulatedconfirmingexperimentalpatientsinflammatoryfunctionalstudiesgloballydeficientneutrophil-specificDeficiencygenesreducediseaseDiscussion:CollectivelyresultssuggestdermalpopulationsindividualcontributionpathogenesisdispensableinfiltratingCLRspemphigoidsinglecellRNAseq

Similar Articles

Cited By