3D imaging and morphometric descriptors of vascular networks on optically cleared organs.

Nabil Nicolas, Virginie Dinet, Etienne Roux
Author Information
  1. Nabil Nicolas: University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France.
  2. Virginie Dinet: University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France.
  3. Etienne Roux: University Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600 Pessac, France.

Abstract

The vascular system is a multi-scale network whose functionality depends on its structure, and for which structural alterations can be linked to pathological shifts. Though biologists use multiple 3D imaging techniques to visualize vascular networks, the 3D image processing methodologies remain sources of biases, and the extraction of quantitative morphometric descriptors remains flawed. The article, first, reviews the current 3D image processing methodologies, and morphometric descriptors of vascular network images mainly obtained by light-sheet microscopy on optically cleared organs, found in the literature. Second, it proposes operator-independent segmentation and skeletonization methodologies using the freeware ImageJ. Third, it gives more extractable network-level (density, connectivity, fractal dimension) and segment-level (length, diameter, tortuosity) 3D morphometric descriptors and how to statistically analyze them. Thus, it can serve as a guideline for biologists using 3D imaging techniques of vascular networks, allowing the production of more comparable studies in the future.

Keywords

References

  1. J Neurosci. 2009 Nov 18;29(46):14553-70 [PMID: 19923289]
  2. Biology (Basel). 2021 Apr 07;10(4): [PMID: 33917130]
  3. Open Med (Wars). 2018 Sep 08;13:374-383 [PMID: 30211320]
  4. Front Immunol. 2021 Jun 21;12:699336 [PMID: 34234786]
  5. Front Physiol. 2020 Dec 21;11:603197 [PMID: 33408642]
  6. Cell Rep Methods. 2022 Mar 23;2(4):100189 [PMID: 35497491]
  7. Sci Rep. 2018 Jan 23;8(1):1412 [PMID: 29362484]
  8. Bone. 2010 Dec;47(6):1076-9 [PMID: 20817052]
  9. Theranostics. 2018 Mar 7;8(8):2117-2133 [PMID: 29721067]
  10. Vascul Pharmacol. 2021 Dec;141:106905 [PMID: 34506969]
  11. Am J Physiol. 1991 Dec;261(6 Pt 1):L361-9 [PMID: 1767856]
  12. Nat Methods. 2020 Apr;17(4):442-449 [PMID: 32161395]
  13. J Anat. 2017 Mar;230(3):471-483 [PMID: 27995631]
  14. Bioinformatics. 2013 Jul 15;29(14):1840-1 [PMID: 23681123]
  15. BMC Bioinformatics. 2021 Jun 26;22(1):346 [PMID: 34174827]
  16. IEEE Trans Image Process. 1995;4(3):370-8 [PMID: 18289986]
  17. Nat Commun. 2019 May 24;10(1):2312 [PMID: 31127113]
  18. Biotechnol Bioeng. 2019 Oct;116(10):2742-2763 [PMID: 31282993]
  19. PLoS One. 2017 Mar 2;12(3):e0171033 [PMID: 28253274]
  20. J Appl Physiol (1985). 1990 Aug;69(2):532-45 [PMID: 2228863]
  21. Anat Rec (Hoboken). 2012 Sep;295(9):1473-81 [PMID: 22807267]
  22. Exp Eye Res. 2019 Mar;180:137-145 [PMID: 30578790]
  23. Microvasc Res. 2020 Mar;128:103928 [PMID: 31676310]
  24. Cell. 2020 Feb 20;180(4):780-795.e25 [PMID: 32059781]
  25. JCI Insight. 2017 Aug 17;2(16): [PMID: 28814672]
  26. Comput Biol Med. 2006 Sep;36(9):974-96 [PMID: 16076463]
  27. Phys Life Rev. 2022 Jul;41:1-21 [PMID: 35339047]