Exploring the potential of halotolerant bacteria from coastal regions to mitigate salinity stress in wheat: physiological, molecular, and biochemical insights.

Muhammad Aizaz, Waqar Ahmad, Ibrahim Khan, Sajjad Asaf, Saqib Bilal, Rahmatullah Jan, Saleem Asif, Muhammad Waqas, Abdul Latif Khan, Kyung-Min Kim, Ahmed Al-Harrasi
Author Information
  1. Muhammad Aizaz: Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
  2. Lubna: Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
  3. Waqar Ahmad: Department of Engineering Technology, University of Houston, Sugar Land, TX, United States.
  4. Ibrahim Khan: Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
  5. Sajjad Asaf: Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
  6. Saqib Bilal: Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.
  7. Rahmatullah Jan: Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
  8. Saleem Asif: Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
  9. Muhammad Waqas: Department of Agriculture Extension, Government of Khyber Pakhtunkhwa, Mardan, Pakistan.
  10. Abdul Latif Khan: Department of Engineering Technology, University of Houston, Sugar Land, TX, United States.
  11. Kyung-Min Kim: Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
  12. Ahmed Al-Harrasi: Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman.

Abstract

Salinity stress, a significant global abiotic stress, is caused by various factors such as irrigation with saline water, fertilizer overuse, and drought conditions, resulting in reduced agricultural production and sustainability. In this study, we investigated the use of halotolerant bacteria from coastal regions characterized by high salinity as a solution to address the major environmental challenge of salinity stress. To identify effective microbial strains, we isolated and characterized 81 halophilic bacteria from various sources, such as plants, rhizosphere, algae, lichen, sea sediments, and sea water. We screened these bacterial strains for their plant growth-promoting activities, such as indole acetic acid (IAA), phosphate solubilization, and siderophore production. Similarly, the evaluation of bacterial isolates through bioassay revealed that approximately 22% of the endophytic isolates and 14% of rhizospheric isolates exhibited a favorable influence on seed germination and seedling growth. Among the tested isolates, GREB3, GRRB3, and SPSB2 displayed a significant improvement in all growth parameters compared to the control. As a result, these three isolates were utilized to evaluate their efficacy in alleviating the negative impacts of salt stress (150 mM, 300 mM, and seawater (SW)) on the growth of wheat plants. The result showed that shoot length significantly increased in plants inoculated with bacterial isolates up to 15% (GREB3), 16% (GRRB3), and 24% (SPSB2), respectively, compared to the control. The SPSB2 strain was particularly effective in promoting plant growth and alleviating salt stress. All the isolates exhibited a more promotory effect on root length than shoot length. Under salt stress conditions, the GRRB3 strain significantly impacted root length, leading to a boost of up to 6%, 5%, and 3.8% at 150 mM, 300 mM, and seawater stress levels, respectively. The bacterial isolates also positively impacted the plant's secondary metabolites and antioxidant enzymes. The study also identified the 2 gene as highly upregulated under salt stress, whereas 6 was downregulated. These findings demonstrate the potential of beneficial microbes as a sustainable approach to mitigate salinity stress in agriculture.

Keywords

References

  1. Microorganisms. 2021 Oct 22;9(11): [PMID: 34835329]
  2. Front Microbiol. 2018 Jan 11;8:2580 [PMID: 29379471]
  3. Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49 [PMID: 15590011]
  4. Front Microbiol. 2018 Sep 11;9:2119 [PMID: 30254615]
  5. J Appl Microbiol. 2015 Mar;118(3):672-84 [PMID: 25494882]
  6. J Plant Physiol. 2015 Jul 20;184:57-67 [PMID: 26217911]
  7. Plant Cell Rep. 2022 Jan;41(1):1-31 [PMID: 34351488]
  8. J Plant Physiol. 2021 Aug;263:153462 [PMID: 34225178]
  9. Plant Physiol. 1951 Jan;26(1):192-5 [PMID: 16654351]
  10. Saudi J Biol Sci. 2020 Apr;27(4):1057-1065 [PMID: 32256166]
  11. PLoS One. 2018 May 1;13(5):e0196592 [PMID: 29715304]
  12. Sci Total Environ. 2016 Dec 15;573:727-739 [PMID: 27591523]
  13. Front Microbiol. 2021 Apr 14;12:650771 [PMID: 33936008]
  14. J Genet Eng Biotechnol. 2021 Aug 18;19(1):120 [PMID: 34406527]
  15. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  16. Can J Microbiol. 2002 Jul;48(7):635-42 [PMID: 12224562]
  17. Front Microbiol. 2016 Feb 02;6:1360 [PMID: 26869996]
  18. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  19. Plant Physiol Biochem. 2020 Nov;156:242-256 [PMID: 32979797]
  20. Biochim Biophys Acta. 1963 Aug 20;72:619-29 [PMID: 14071565]
  21. FEMS Microbiol Ecol. 2005 Nov 1;54(3):401-15 [PMID: 16332338]
  22. Toxics. 2023 Apr 13;11(4): [PMID: 37112598]
  23. PLoS One. 2020 Jul 10;15(7):e0236006 [PMID: 32649724]
  24. Indian J Exp Biol. 1982 Dec;20(12):889-93 [PMID: 7183525]
  25. Plant Biol (Stuttg). 2020 Sep;22(5):850-862 [PMID: 32329163]
  26. Plant Cell Rep. 2015 Feb;34(2):247-63 [PMID: 25477204]
  27. Microbiol Res. 2021 Nov;252:126861 [PMID: 34521049]
  28. Ecotoxicol Environ Saf. 2022 Jun 1;237:113541 [PMID: 35483144]
  29. Front Plant Sci. 2017 Aug 29;8:1510 [PMID: 28900441]
  30. AMB Express. 2022 May 7;12(1):52 [PMID: 35524860]
  31. Front Plant Sci. 2022 Sep 02;13:994902 [PMID: 36119605]
  32. Int J Mol Sci. 2023 Mar 03;24(5): [PMID: 36902334]
  33. Front Plant Sci. 2017 Apr 24;8:611 [PMID: 28484479]
  34. Sustain Sci. 2016;11(3):411-421 [PMID: 30174734]
  35. Sci Rep. 2020 Oct 12;10(1):16975 [PMID: 33046721]
  36. J Appl Microbiol. 2021 Oct;131(4):1919-1931 [PMID: 33754394]
  37. BMC Plant Biol. 2021 Apr 12;21(1):176 [PMID: 33845762]
  38. Plants (Basel). 2022 Jan 27;11(3): [PMID: 35161325]
  39. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  40. Curr Opin Plant Biol. 2011 Jun;14(3):296-302 [PMID: 21511515]
  41. Plant Physiol Biochem. 2004 Jun;42(6):565-72 [PMID: 15246071]
  42. Can J Microbiol. 2018 Dec;64(12):968-978 [PMID: 30148967]
  43. Microorganisms. 2021 Jun 09;9(6): [PMID: 34207668]
  44. J Fungi (Basel). 2021 Sep 10;7(9): [PMID: 34575783]
  45. Mol Biol Evol. 2013 Dec;30(12):2725-9 [PMID: 24132122]
  46. Biomed Res Int. 2019 Oct 20;2019:9530963 [PMID: 31886270]
  47. Biomed Res Int. 2022 Aug 25;2022:5960004 [PMID: 36060140]
  48. Int J Mol Sci. 2021 May 10;22(9): [PMID: 34068779]
  49. Nat Commun. 2021 Nov 18;12(1):6663 [PMID: 34795219]
  50. Appl Biochem Biotechnol. 2022 Oct;194(10):4400-4423 [PMID: 35320507]
  51. Front Microbiol. 2020 Jul 07;11:1216 [PMID: 32733391]
  52. Arch Microbiol. 2020 Nov;202(9):2419-2428 [PMID: 32591911]
  53. Environ Sci Pollut Res Int. 2021 Aug;28(30):40971-40991 [PMID: 33772716]
  54. Int J Biol Macromol. 2021 Jan 15;167:756-765 [PMID: 33285197]
  55. Heliyon. 2018 Nov 22;4(11):e00954 [PMID: 30519656]
  56. Saudi J Biol Sci. 2015 Mar;22(2):123-31 [PMID: 25737642]
  57. J Adv Res. 2020 Jul 11;26:69-82 [PMID: 33133684]
  58. Front Plant Sci. 2022 Aug 02;13:959427 [PMID: 35982708]
  59. Plants (Basel). 2021 Jan 20;10(2): [PMID: 33498148]
  60. Ecotoxicol Environ Saf. 2018 Oct 30;162:129-138 [PMID: 29990724]
  61. Microorganisms. 2021 Aug 13;9(8): [PMID: 34442808]
  62. Biology (Basel). 2021 Oct 29;10(11): [PMID: 34827107]
  63. Front Microbiol. 2023 Feb 20;14:1102547 [PMID: 36891384]
  64. Plant Mol Biol. 2016 Aug;91(6):651-9 [PMID: 27233644]

Word Cloud

Created with Highcharts 10.0.0stressisolatessalinitybacteriabacterialgrowthsaltmMlengthhalotolerantplantsGRRB3SPSB2seawatersignificantabioticvariouswaterconditionsproductionstudycoastalregionscharacterizedeffectivestrainsseaplantexhibitedGREB3comparedcontrolresultalleviating150300shootsignificantlyrespectivelystrainrootimpactedalsopotentialmitigateSalinityglobalcausedfactorsirrigationsalinefertilizeroverusedroughtresultingreducedagriculturalsustainabilityinvestigatedusehighsolutionaddressmajorenvironmentalchallengeidentifymicrobialisolated81halophilicsourcesrhizospherealgaelichensedimentsscreenedgrowth-promotingactivitiesindoleaceticacidIAAphosphatesolubilizationsiderophoreSimilarlyevaluationbioassayrevealedapproximately22%endophytic14%rhizosphericfavorableinfluenceseedgerminationseedlingAmongtesteddisplayedimprovementparametersthreeutilizedevaluateefficacynegativeimpactsSWwheatshowedincreasedinoculated15%16%24%particularlypromotingpromotoryeffectleadingboost6%5%38%levelspositivelyplant'ssecondarymetabolitesantioxidantenzymesidentified2genehighlyupregulatedwhereas6downregulatedfindingsdemonstratebeneficialmicrobessustainableapproachagricultureExploringwheat:physiologicalmolecularbiochemicalinsightsalleviation

Similar Articles

Cited By