Essential Oil from Has Antiquorum Sensing and Antibiofilm Potential against Strain PAO1.

Palwasha Khan, Amara Waheed, Muhammad Azeem, Amna Parveen, Muhammad Arfat Yameen, Jamshed Iqbal, Muhammad Ali, Shiwei Wang, Sadaf Qayyum, Awal Noor, Tatheer Alam Naqvi
Author Information
  1. Palwasha Khan: Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  2. Amara Waheed: Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  3. Muhammad Azeem: Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  4. Amna Parveen: Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  5. Muhammad Arfat Yameen: Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  6. Jamshed Iqbal: Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  7. Muhammad Ali: Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan.
  8. Shiwei Wang: Key Laboratory of Resources Biology and Biotechnology in Western China, School of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, China.
  9. Sadaf Qayyum: Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hofuf 31982, Al-Hassa, Saudi Arabia.
  10. Awal Noor: Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hofuf 31982, Al-Hassa, Saudi Arabia.
  11. Tatheer Alam Naqvi: Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22044, Pakistan. ORCID

Abstract

Biofilms are complex communities of microorganisms that are enclosed in a matrix that shows increased resistance to antimicrobial and immunological encounters. Mostly, the traditional methods to control biofilm are exhausted; therefore, the aim is to evaluate the potential of essential oil (EO) from to encounter biofilm and other related virulence factors. The EO of was extracted through steam-distillation, analyzed on gas chromatography-mass spectrometry, and the biofilm inhibition assays were performed with various concentrations of EO. Mainly the EO from contains -β-ocimene (29.1%), -tagetenone (23.1%), and -tagetenone (17.7%). The virulence factors were monitored while applying different concentrations of EO and it was recorded that the EO from significantly inhibited the virulence factors linked with quorum sensing (QS), such as pyocyanin production, protease production, and swarming motility. Biofilm formation is one of the most important virulence factors associated with the QS pathway and was inhibited up to 79% in the presence of EO. Antibacterial activity against the PAO1 of EO was not so promising particularly and it has high MIC (325 μg/mL) and MBC (5000 μg/mL). EO is quite efficient to inhibit biofilm in a very small concentration of 20 μg/mL, which confirms that the biofilm inhibition by EO is not by killing bacterial cells but by inhibiting the QS pathway. The study on PAO1 constructs carrying various QS reported genes confirmed that the EO interferes with the QS pathway that ultimately controls various virulence factors caused by PAO1.

References

  1. J Bacteriol. 1980 Nov;144(2):844-7 [PMID: 6776099]
  2. PLoS One. 2015 Aug 11;10(8):e0135495 [PMID: 26263486]
  3. J Bacteriol. 2007 Jul;189(13):4827-36 [PMID: 17449617]
  4. J Bacteriol. 1999 Jul;181(13):4133-6 [PMID: 10383988]
  5. Front Microbiol. 2017 Jun 26;8:1144 [PMID: 28694794]
  6. Annu Rev Microbiol. 2000;54:49-79 [PMID: 11018124]
  7. Front Microbiol. 2019 Nov 19;10:2619 [PMID: 31803159]
  8. Food Chem Toxicol. 2006 Sep;44(9):1522-9 [PMID: 16757077]
  9. Am J Physiol Lung Cell Mol Physiol. 2004 Jul;287(1):L94-103 [PMID: 15020296]
  10. Front Microbiol. 2021 May 12;12:676458 [PMID: 34054785]
  11. Elife. 2021 Mar 16;10: [PMID: 33722344]
  12. J Ethnopharmacol. 1997 May;56(3):227-32 [PMID: 9201613]
  13. J Ethnopharmacol. 2001 Feb;74(2):113-23 [PMID: 11167029]
  14. FEMS Microbiol Lett. 2004 Jan 15;230(1):27-34 [PMID: 14734162]
  15. Nat Chem Biol. 2013 May;9(5):339-43 [PMID: 23542643]
  16. J Bacteriol. 2008 Apr;190(8):2671-9 [PMID: 18245294]
  17. Food Sci Technol Int. 2020 Apr;26(3):231-241 [PMID: 31684768]
  18. Mol Microbiol. 2007 Jul;65(1):153-65 [PMID: 17581126]
  19. Annu Rev Genet. 2001;35:439-68 [PMID: 11700290]
  20. Asian Pac J Trop Med. 2017 Aug;10(8):729-743 [PMID: 28942821]
  21. J Ethnopharmacol. 2017 Aug 17;208:8-15 [PMID: 28668646]
  22. Eur Urol. 2006 Feb;49(2):235-44 [PMID: 16413668]
  23. J Agric Food Chem. 2011 May 25;59(10):5286-92 [PMID: 21469658]
  24. Exp Appl Acarol. 2017 Sep;73(1):139-157 [PMID: 28864886]
  25. BMC Complement Altern Med. 2019 Jun 20;19(1):141 [PMID: 31221162]
  26. Front Microbiol. 2019 Apr 02;10:556 [PMID: 31001210]
  27. Front Plant Sci. 2022 Feb 17;13:820644 [PMID: 35251089]
  28. Mol Microbiol. 2010 Oct;78(1):158-72 [PMID: 20735777]
  29. J Bacteriol. 2007 May;189(9):3603-12 [PMID: 17337585]
  30. Rev Soc Bras Med Trop. 2016 Nov-Dec;49(6):703-712 [PMID: 28001217]
  31. BMC Complement Altern Med. 2017 Feb 28;17(1):133 [PMID: 28241818]
  32. J Bacteriol. 1990 Feb;172(2):884-900 [PMID: 2153661]
  33. J Vis Exp. 2011 Jan 30;(47): [PMID: 21307833]
  34. Trends Microbiol. 2005 Jan;13(1):20-6 [PMID: 15639628]
  35. Cold Spring Harb Perspect Med. 2012 Nov 01;2(11): [PMID: 23125205]
  36. J Microbiol. 2015 Feb;53(2):176-80 [PMID: 25564444]
  37. Clin Microbiol Infect. 2010 Dec;16(12):1770-5 [PMID: 20132256]
  38. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8305-6 [PMID: 16717189]
  39. Nat Rev Microbiol. 2010 Sep;8(9):623-33 [PMID: 20676145]
  40. Asian Pac J Trop Biomed. 2014 Mar;4(3):219-27 [PMID: 25182441]
  41. Nature. 2000 Aug 31;406(6799):959-64 [PMID: 10984043]
  42. Mol Microbiol. 2006 Dec;62(5):1264-77 [PMID: 17059568]
  43. J Med Microbiol. 2020 Jan;69(1):25-34 [PMID: 31794380]
  44. Bioresour Technol. 2008 May;99(7):2507-15 [PMID: 17583499]
  45. J Med Microbiol. 2010 May;59(Pt 5):511-520 [PMID: 20093376]
  46. J Ethnopharmacol. 2021 Mar 25;268:113603 [PMID: 33242619]
  47. Cell Res. 2015 Dec;25(12):1352-67 [PMID: 26611635]
  48. Molecules. 2018 Aug 23;23(9): [PMID: 30142938]
  49. Evid Based Complement Alternat Med. 2017;2017:2576548 [PMID: 28484501]
  50. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11353-8 [PMID: 26311845]
  51. J Ethnopharmacol. 2020 Feb 10;248:112272 [PMID: 31586695]
  52. Afr J Tradit Complement Altern Med. 2016 Aug 12;13(5):67-71 [PMID: 28487896]
  53. Int J Food Microbiol. 2004 Aug 1;94(3):223-53 [PMID: 15246235]
  54. BMC Complement Altern Med. 2017 Jul 5;17(1):351 [PMID: 28676058]
  55. Acta Med Okayama. 2004 Aug;58(4):207-14 [PMID: 15551758]
  56. Roum Arch Microbiol Immunol. 2010 Jul-Sep;69(3):125-38 [PMID: 21434589]
  57. Biofouling. 2019 Mar;35(3):361-375 [PMID: 31088182]

Word Cloud

Created with Highcharts 10.0.0EObiofilmvirulencefactorsQSPAO1variouspathwayμg/mLinhibitionconcentrations1%-tagetenoneinhibitedproductionBiofilmscomplexcommunitiesmicroorganismsenclosedmatrixshowsincreasedresistanceantimicrobialimmunologicalencountersMostlytraditionalmethodscontrolexhaustedthereforeaimevaluatepotentialessentialoilencounterrelatedextractedsteam-distillationanalyzedgaschromatography-massspectrometryassaysperformedMainlycontains-β-ocimene2923177%monitoredapplyingdifferentrecordedsignificantlylinkedquorumsensingpyocyaninproteaseswarmingmotilityBiofilmformationoneimportantassociated79%presenceAntibacterialactivitypromisingparticularlyhighMIC325MBC5000quiteefficientinhibitsmallconcentration20confirmskillingbacterialcellsinhibitingstudyconstructscarryingreportedgenesconfirmedinterferesultimatelycontrolscausedEssentialOilAntiquorumSensingAntibiofilmPotentialStrain

Similar Articles

Cited By