State of the art procedures towards reactive [F]fluoride in PET tracer synthesis.

Lizeth Y F Haveman, Danielle J Vugts, Albert D Windhorst
Author Information
  1. Lizeth Y F Haveman: Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands. ORCID
  2. Danielle J Vugts: Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
  3. Albert D Windhorst: Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands. a.d.windhorst@amsterdamumc.nl.

Abstract

BACKGROUND: Positron emission tomography (PET) is a powerful, non-invasive preclinical and clinical nuclear imaging technique used in disease diagnosis and therapy assessment. Fluorine-18 is the predominant radionuclide used for PET tracer synthesis. An impressive variety of new 'late-stage' radiolabeling methodologies for the preparation of F-labeled tracers has appeared in order to improve the efficiency of the labeling reaction.
MAIN BODY: Despite these developments, one outstanding challenge into the early key steps of the process remains: the preparation of reactive [F]fluoride from oxygen-18 enriched water ([O]HO). In the last decade, significant changes into the trapping, elution and drying stages have been introduced. This review provides an overview of the strategies and recent developments in the production of reactive [F]fluoride and its use for radiolabeling.
CONCLUSION: Improved, modified or even completely new fluorine-18 work-up procedures have been developed in the last decade with widespread use in base-sensitive nucleophilic F-fluorination reactions. The many promising developments may lead to a few standardized drying methodologies for the routine production of a broad scale of PET tracers.

Keywords

References

  1. Aerts J, Voccia S, Lemaire C, Giacomelli F, Goblet D, Thonon D, et al. Fast production of highly concentrated reactive [F]fluoride for aliphatic and aromatic nucleophilic radiolabelling. Tetrahedron Lett. 2010;51(1):64–6.
  2. Ahmed H, Haider A, Varisco J, Stankovic M, Wallimann R, Gruber S, et al. Structure–affinity relationships of 2,3,4,5-tetrahydro–1H–3-benzazepine and 6,7,8,9-tetrahydro–5H–benzo[7]annulen-7-amine analogues and the discovery of a radiofluorinated 2,3,4,5-tetrahydro–1H–3-benzazepine congener for imaging GluN2B subunit-containing. J Med Chem. 2019;62:9450–70. [PMID: 31657559]
  3. Andersen IV, García-vázquez R, Battisti UM, Herth MM. Optimization of direct aromatic F‐Labeling of tetrazines. Molecules. 2022;27(13):1–11.
  4. Antuganov D, Zykov M, Timofeev V, Timofeeva K, Antuganova Y, Orlovskaya V, et al. Copper-mediated radiofluorination of aryl pinacolboronate esters: a straightforward protocol by using pyridinium sulfonates. Eur J Org Chem. 2019;5:918–22.
  5. Bailey JJ, Kaiser L, Lindner S, Wu M, Thiel A, Soucy J, et al. First-in-human brain imaging of [F]TRACK, a PET tracer for tropomyosin receptor kinases. ACS Chem Neurosci. 2019;10:1697–2702.
  6. Basuli F, Zhang X, Jagoda EM, Choyke PL, Swenson RE. Rapid synthesis of maleimide functionalized fluorine-18 labeled prosthetic group using “radio‐fluorination on the Sep‐Pak” method. J Label Compd Radiopharm. 2018;61:599–605.
  7. Bejot R, Elizarov AM, Ball E, Zhang J, Miraghaie R, Kolb HC, et al. Batch-mode microfluidic radiosynthesis of N-succinimidyl-4-[F]fluorobenzoate for protein labelling. J Label Compd Radiopharm. 2011;54:117–22.
  8. Bernard-Gauthier V, Mossine AV, Mahringer A, Aliaga A, Bailey JJ, Shao X, et al. Identification of [F]TRACK, a fluorine-18-Labeled tropomyosin receptor kinase (trk) inhibitor for PET imaging. J Med Chem. 2018;61(4):1737–43. [PMID: 29257860]
  9. Berroteran-Infante N, Balber T, Furlinger P, Bergmann M, Lanzenberger R, Hacker M, et al. [F]FEPPA: improved automated radiosynthesis, binding affinity, and preliminary in vitro evaluation in colorectal cancer. ACS Med Chem Lett. 2018;9:177–81. [PMID: 29541356]
  10. Beyzavi MH, Mandal D, Strebl MG, Neumann CN, D’Amato EM, Chen J, et al. F–Deoxyfluorination of phenols via Ru π-complexes. ACS Cent Sci. 2017;3:944–8. [PMID: 28979935]
  11. Bongarzone S, Basagni F, Sementa T, Singh N, Gakpetor C, Faugeras V, et al. Development of [F]FAMTO: a novel fluorine-18 labelled positron emission tomography (PET) radiotracer for imaging CYP11B1 and CYP11B2 enzymes in adrenal glands. Nucl Med Biol. 2019;69:14–21.
  12. Bourdier T, Greguric I, Roselt P, Jackson T, Faragalla J, Katsifis A. Fully automated one-pot radiosynthesis of O-(2-[F]fluoroethyl)-L-tyrosine on the TracerLab FX FN module. Nucl Med Biol. 2011a;38(5):645–51. [PMID: 21718939]
  13. Bourdier T, Shepherd R, Berghofer P, Jackson T, Fookes CJR, Denoyer D, et al. Radiosynthesis and biological evaluation of L- and D-S-(3-[F]fluoropropyl)homocysteine for tumor imaging using positron emission tomography. J Med Chem. 2011b;54:1860–70. [PMID: 21351733]
  14. Bouvet V, Wuest M, Jans H, Janzen N, Genady AR, Valliant JF, et al. Automated synthesis of [F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res. 2016;6(40):1–15.
  15. Bratteby K, Torkelsson E, L’Estrada ET, Peterson K, Shalgunov V, Xiong M, et al. In vivo veritas: F–radiolabeled glycomimetics allow insights into the pharmacological fate of galectin–3 inhibitors. J Med Chem. 2020;63:747–55. [PMID: 31846326]
  16. Bratteby K, Shalgunov V, Battisti UM, Petersen IN, Van Den Broek SL, Ohlsson T, et al. Insights into elution of anion exchange cartridges: opening the path toward aliphatic 18F-radiolabeling of base-sensitive tracers. ACS Pharmacol Transl Sci. 2021;4(5):1556–66. [PMID: 34661074]
  17. Brichard L, Aigbirhio FI. An efficient method for enhancing the reactivity and flexibility of [F]fluoride towards nucleophilic substitution using tetraethylammonium bicarbonate. Eur J Org Chem. 2014;28:6145–9.
  18. Cai Z, Li S, Pracitto R, Navarro A, Shirali A, Ropchan J, et al. Fluorine-18-labeled antagonist for PET imaging of kappa opioid receptors. ACS Chem Neurosci. 2017;8:12–6. [PMID: 27741398]
  19. Cai Z, Li S, Zhang W, Pracitto R, Wu X, Baum E, et al. Synthesis and preclinical evaluation of an F–labeled synaptic vesicle glycoprotein 2A PET imaging probe: [F]SynVesT–2. ACS Chem Neurosci. 2020;11:592–603. [PMID: 31961649]
  20. Cardinale J, Ermert J, Humpert S, Coenen HH. Iodonium ylides for one-step, no-carrier-added radiofluorination of electron rich arenes, exemplified with 4-(([F]fluorophenoxy)phenylmethyl)piperidine NET and SERT ligands. RSC Adv. 2014;4:17293–9.
  21. Cardinale J, Martin R, Remde Y, Schäfer M, Hienzsch A, Hübner S, et al. Procedures for the GMP-compliant production and quality control of [F]PSMA-1007: a next generation radiofluorinated tracer for the detection of prostate cancer. Pharmaceuticals. 2017;10(77):1–18.
  22. Celen S, Rokka J, Gilbert TM, Koole M, Vermeulen I, Serdons K, et al. Translation of HDAC6 PET imaging using [F]EKZ-001-cGMP production and measurement of HDAC6 target occupancy in nonhuman primates. ACS Chem Neurosci. 2020;11(7):1093–101. [PMID: 32159328]
  23. Chang CW, Chou TK, Liu RS, Wang SJ, Lin WJ, Chen CH, et al. A robotic synthesis of [F]fluoromisonidazole ([F]FMISO). Appl Radiat Isot. 2007;65:682–6. [PMID: 17379530]
  24. Chao PH, Lazari M, Hanet S, Narayanam MK, Murphy JM, Van Dam RM. Automated concentration of [F]fluoride into microliter volumes. Appl Radiat Isot. 2018;141:138–48. [PMID: 30243135]
  25. Chen S, Javed MR, Kim H, Lei J, Lazari M, Shah GJ, et al. Lab on a chip tomography (PET) tracers using a single digital microfluidic reactor chip. Lab Chip. 2014;14:902–10. [PMID: 24352530]
  26. Cherif A, Yang DJ, Tansey W, Kim EE, Wallace S. Rapid synthesis of 3-[F]fluoro-1-(2′-nitro-1′-imidazolyl)-2-propanol ([F]fluoromisonidazole). Pharm Res. 1994;11(3):466–9. [PMID: 8008718]
  27. Clemente GS, Zarganes-tzitzikas T, Dömling A, Elsinga PH. Late-stage copper-catalyzed radiofluorination of an arylboronic ester derivative of atorvastatin. Molecules. 2019;24(4210):1–9.
  28. Clemente GS, Rickmeier J, Antunes IF, Zarganes-tzitzikas T, Dömling A, Ritter T, et al. [F]atorvastatin: synthesis of a potential molecular imaging tool for the assessment of statin-related mechanisms of action. EJNMMI Res. 2020;10(34):1–13.
  29. Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, et al. Consensus nomenclature rules for radiopharmaceutical chemistry—setting the record straight. Nucl Med Biol. 2017;55:v–xi. [PMID: 29074076]
  30. Collier TL, Normandin MD, Stephenson NA, Livni E, Liang SH, Wooten DW, et al. Synthesis and preliminary PET imaging of  C and F isotopologues of the ROS1/ALK inhibitor lorlatinib. Nat Commun. 2017;8:1–12.
  31. Crouzel C, Venet M, Irie T, Sanz G, Boullais C. Labeling of a serotoninergic ligand with 18F: [F]setoperone. J Label Compd Radiopharm. 1988;25(4):403–14.
  32. Dahl K, Garcia A, Stephenson NA, Vasdev N. In-loop” F‐fluorination: a proof‐of‐concept study. J Label Compd Radiopharm. 2019;62:292–7.
  33. Deng H, Cobb SL, Gee AD, Lockhart A, Martarello L, Mcglinchey RP, et al. Fluorinase mediated C–F bond formation, an enzymatic tool for PET labelling. Chem Commun. 2006;6:652–4.
  34. Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, et al. Chemistry for positron emission tomography: recent advances in  C-, F-,  N-, and O-labeling reactions. Angew Chemie Int Ed. 2019;58(9):2580–605.
  35. Dornan MH, Simard J-M, Leblond A, Juneau D, Delouya G, Saad F, et al. Simplified and robust one-step radiosynthesis of [F]DCFPyL via direct radiofluorination and cartridge‐based purification. J Label Compd Radiopharm. 2018;61:757–63.
  36. Drerup C, Ermert J, Coenen HH. Synthesis of a potent aminopyridine-based nNOS-inhibitor by two recent no-carrier-added F-labelling methods. Molecules. 2016;21(1160):1–21.
  37. Elie J, Vercouillie J, Arlicot N, Lemaire L, Bidault R, Bodard S, et al. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [F]PET tracer. J Enzyme Inhib Med Chem. 2019;34(1):1–7. [PMID: 30362376]
  38. Elizarov AM, Van Dam RM, Shin YS, Kolb HC, Padgett HC, Stout D, et al. Design and optimization of coin-shaped microreactor chips for PET radiopharmaceutical synthesis. J Nucl Med. 2010;51(2):282–8. [PMID: 20124050]
  39. Fedorova O, Nikolaeva V, Krasikova R. Automated SPE-based synthesis of 16α-[F]fluoroestradiol without HPLC purification step. Appl Radiat Isot. 2018;141:57–63. [PMID: 30176563]
  40. Feni L, Omrane MA, Fischer M, Zlatopolskiy BD, Neumaier B, Neundorf I. Convenient preparation of F-labeled peptide probes for potential claudin-4 PET imaging. Pharmaceuticals. 2017;10(99):1–15.
  41. Fiel SA, Yang H, Scha P, Weng S, Inkster JAH, Wong MCK, et al. Magnetic droplet microfluidics as a platform for the concentration of [F]fluoride and radiosynthesis of sulfonyl [F]fluoride. ACS Appl Mater. 2015;7:12923–9.
  42. Fujinaga M, Kumata K, Zhang Y, Hatori A, Yamasaki T, Mori W, et al. Synthesis of two novel [F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain. Org Biomol Chem R Soc Chem. 2018;16(37):8325–35.
  43. Gu Y, Huang D, Liu Z, Huang J, Zeng W. Labeling strategies with F-18 for positron emission tomography imaging. Med Chem (Los Angeles). 2011;7(5):334–44.
  44. Guibbal F, Meneyrol V, Ait-Arsa I, Diotel N, Patché J, Veeren B, et al. Synthesis and automated labeling of [F]Darapladib, a Lp-PLA2 ligand, as potential PET imaging tool of atherosclerosis. ACS Med Chem Lett. 2019;10(5):743–8. [PMID: 31097993]
  45. Guibbal F, Isenegger PG, Wilson TC, Pacelli A, Mahaut D, Sap JBI, et al. Manual and automated Cu-mediated radiosynthesis of the PARP inhibitor [F]olaparib. Nat Protoc. 2020;15(April):1525–41. [PMID: 32111986]
  46. Guillouet S, Patin D, Tirel O, Delamare J, Gourand F, Deloye JB, et al. Fully automated radiosynthesis of 2-[F]fludarabine for PET imaging of low-grade lymphoma. Mol Imaging Biol. 2014;16:28–35. [PMID: 23836501]
  47. Haider A, Iten I, Ahmed H, Adrienne M, Gruber S, Kr SD, et al. Identification and preclinical evaluation of a radiofluorinated benzazepine derivative for imaging the GluN2B subunit of the ionotropic NMDA receptor. J Nucl Med. 2019;60(2):259–67. [>PMCID: ]
  48. Hamacher K, Coenen HH. No-carrier-added nucleophilic F-labelling in an electrochemical cell exemplified by the routine production of [F]altanserin. Appl Radiat Isot. 2006;64:989–94. [PMID: 16829074]
  49. Hamacher K, Hamkens W. Remote controlled cne-step production of F labeled butyrophenone neuroleptics exemplified by the synthesis of n.c.a. [F]N-methylspiperone. Appl Radiat Isot. 1995;46(9):911–6.
  50. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[F]Fluoro-2-Deoxy-D-Glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–8. [PMID: 3712040]
  51. Hamacher K, Hirschfelder T, Coenen HH. Electrochemical cell for separation of [18F]fluoride from irradiated O-water and subsequent no carrier added nucleophilic fluorination. Appl Radiat Isot. 2002;56:519–23. [PMID: 11922419]
  52. Hamill TG, Krause S, Ryan C, Bonnefous C, Govek S, Seiders TJ, et al. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse. 2005;56:205–16. [PMID: 15803497]
  53. Hamill TG, Eng W, Jennings A, Lewis R, Thomas S, Wood S, et al. The synthesis and preclinical evaluation in rhesus monkey of [F]MK-6577 and [ C]CMPyPB glycine transporter 1 positron emission tomography radiotracers. Synapse. 2011;65:261–70. [PMID: 20687108]
  54. Hayashi K, Furutsuka K, Takei M, Muto M, Nakao R, Aki H, et al. High-yield automated synthesis of [F]fluoroazomycin arabinoside ([F]FAZA) for hypoxia-specific tumor imaging. Appl Radiat Isot. 2011;69(7):1007–13. [PMID: 21420304]
  55. Herth MM, Ametamey S, Antuganov D, Bauman A, Berndt M, Brooks AF, et al. On the consensus nomenclature rules for radiopharmaceutical chemistry: reconsideration of radiochemical conversion. Nucl Med Biol. 2021;93:19–21. [PMID: 33232876]
  56. Hoover AJ, Lazari M, Ren H, Narayanam MK, Murphy JM, Van Dam RM, et al. A transmetalation reaction enables the synthesis of [F]5-fluorouracil from [F]fluoride for human PET imaging. Organometallics. 2016;35:1008–14. [PMID: 27087736]
  57. Hostetler ED, Eng W, Joshi AD, Sanabria-bohórquez S, Kawamoto H, Ito S, et al. Synthesis, characterization, and monkey PET studies of [F]MK-1312, a PET tracer for quantification of mGluR1 receptor occupancy by MK-5435. Synapse. 2011a;65:125–35. [PMID: 20524178]
  58. Hostetler ED, Sanabria-bohórquez S, Fan H, Zeng Z, Gammage L, Miller P, et al. [F]fluoroazabenzoxazoles as potential amyloid plaque PET tracers: synthesis and in vivo evaluation in rhesus monkey. Nucl Med Biol. 2011b;38(8):1193–203. [PMID: 21741254]
  59. Huang X, Liu W, Ren H, Neelamegam R, Hooker JM, Groves JT. Late stage benzylic C–H fluorination with [F]fluoride for PET imaging. J Am Chem Soc. 2014;136(19):6842–5. [PMID: 24766544]
  60. Ismail R, Irribaren J, Javed R, Machness A, Van Dam RM, Keng PY. Cationic imidazolium polymer monoliths for efficient solvent exchange, activation and fluorination on a continuous flow system. RSC Adv. 2014;4:25348–56.
  61. Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K. Minimization of the amount of Kryptofix 222 - KHCO for applications to microscale F-radiolabeling. Appl Radiat Isot. 2017;125:113–8. [PMID: 28431335]
  62. Iwata R, Pascali C, Terasaki K, Ishikawa Y, Furumoto S, Yanai K. Practical microscale one-pot radiosynthesis of F‐labeled probes. J Label Compd Radiopharm. 2018;61:540–9.
  63. Javed MR, Chen S, Kim H, Wei L, Czernin J, Kim C, et al. Efficient radiosynthesis of 3′-deoxy-3′-18F-fluorothymidine using electrowetting-on-dielectric digital microfluidic chip. J Nucl Med. 2014a;55:321–9. [PMID: 24365651]
  64. Javed MR, Chen S, Lei J, Collins J, Sergeev M, Kim H, et al. High yield and high specific activity synthesis [F]fallypride in a batch microfluidic reactor for micro-PET imaging. Chem Commun. 2014b;50:1192–4.
  65. Jiang H, Dimagno SG, Degrado TR. Production and transport of gaseous F-synthons: F-acyl fluoride. J Fluor Chem. 2015;180:181–5. [PMID: 27003949]
  66. Jung YW, Gu G, Raffel DM. Improved synthesis of 4-[F]fluoro-m-hydroxyphenethylguanidine using an iodonium ylide precursor. J Label Compd Radiopharm. 2019;62(12):835–42.
  67. Katsifis A, Hamachert K, Schnitter J, Stocklin G. Optimization studies concerning the direct nucleophilic fluorination of butyrophenone neuroleptics. Appl Radiat Isot. 1993;44(7):1015–20.
  68. Keng PY, Chen S, Ding H, Sadeghi S, Shah GJ, Dooraghi A et al. Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc Natl Acad Sci. 2012;109(3):690–5. [PMID: 22210110]
  69. Kim DW, Choe YS, Chi DY. A new nucleophilic fluorine-18 labeling method for aliphatic mesylates: reaction in ionic liquids shows tolerance for water. Nucl Med Biol. 2003;30:345–50. [PMID: 12767390]
  70. Kim HW, Jeong JM, Lee Y-S, Chi DY, Chung K-H, Lee DS, et al. Rapid synthesis of [F]FDG without an evaporation step using an ionic liquid. Appl Radiat Isot. 2004;61:1241–6. [PMID: 15388116]
  71. Knott KE, Grätz D, Hübner S, Jüttler S, Zankl C, Müller M. Simplified and automatic one-pot synthesis of 16a-[F]fluoroestradiol without high-performance liquid chromatography purification. J Label Compd Radiopharm. 2011;54:749–53.
  72. Kronenberg UB, Drewes B, Sihver W, Coenen HH. N-2-(4-N-(4-[F]fluorobenzamido)phenyl)-propyl-2- propanesulphonamide: synthesis and radiofluorinatio of a putative AMPA receptor ligand. J Label Compd Radiopharm. 2007;50:1169–75.
  73. Kuik W, Kema IP, Brouwers AH, Zijlma R, Neumann KD, Dierckx RAJO, et al. In vivo biodistribution of no-carrier-added 6-F-fluoro-3,4-dihydroxy-L-phenylalanine (F-DOPA), produced by a new nucleophilic substitution approach, compared with carrier-added F-DOPA, prepared by conventional electrophilic substitution. J Nucl Med. 2015;56(1):106–12. [PMID: 25500826]
  74. Kumata K, Zhang Y, Fujinaga M, Ohkubo T, Mori W, Yamasaki T, et al. [F]DAA1106: automated radiosynthesis using spirocyclic iodonium ylide and preclinical evaluation for positron emission tomography imaging of translocator protein (18 kDa). Bioorg Med Chem. 2018;26(17):4817–22. [PMID: 30166255]
  75. Labas R, Gilbert G, Nicole O, Dhilly M, Abbas A, Tirel O, et al. Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem. 2011;46(6):2295–309. [PMID: 21453995]
  76. Lahdenpohja SO, Rajala NA, Rajander J, Kirjavainen AK. Fast and efficient copper-mediated F-fluorination of arylstannanes, aryl boronic acids, and aryl boronic esters without azeotropic drying. EJNMMI Radiopharm Chem. 2019;4(28):1–11.
  77. Lakshminarayanan N, Kumar A, Roy S, Pawar Y, Chaudhari P. Improved method for preparing Ni(II) complex of (S)-tyrosine Schiff base and its use in the automated synthesis of O-(2′-[F]fluoroethyl)-L-tyrosine using solid-phase extraction purification. Appl Radiat Isot. 2017;127:122–9. [PMID: 28570917]
  78. Lazari M, Collins J, Shen B, Farhoud M, Yeh D, Maraglia B, et al. Fully automated production of diverse F-labeled PET tracers on the ELIXYS multireactor radiosynthesizer without hardware modification. J Nucl Med. 2014;42(3):203–10.
  79. Lazari M, Lyashchenko SK, Burnazi EM, Lewis JS, Van Dam RM, Murphy JM. Fully-automated synthesis of 16β-F-fluoro-5α-dihydrotestosteron (FDHT) on the ELIXYS radiosynthesizer. Appl Radiat Isot. 2015;103:9–14. [PMID: 26046518]
  80. Lebedev A, Miraghaie R, Kotta K, Ball CE, Zhang J, Buchsbaum MS, et al. Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer. Lab Chip. 2013;13:136–45. [PMID: 23135409]
  81. Lee C, Sui G, Elizarov A, Shu CJ, Shin Y, Dooley AN, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science. 2005;310:1793–7. [PMID: 16357255]
  82. Lee BC, Kim JS, Kim BS, Son JY, Hong SK, Park HS, et al. Aromatic radiofluorination and biological evaluation of 2-aryl-6-[F]fluorobenzothiazoles as a potential positron emission tomography imaging probe for b-amyloid plaques. Bioorg Med Chem. 2011a;19(9):2980–90. [PMID: 21478020]
  83. Lee SJ, Oh SJ, Moon WY, Choi MS, Kim JS, Chi DY, et al. New automated synthesis of [F]FP-CIT with base amount control affording high and stable radiochemical yield: a 1.5-year production report. Nucl Med Biol. 2011b;38(4):593–7. [PMID: 21531297]
  84. Lee SJ, Oh SJ, Chi DY, Moon DH, Ryu JS. High yielding [F]fluorination method by fine control of the base. Bull Korean Chem Soc. 2012;33(7):2177–80.
  85. Lee SJ, Hyun JS, Oh SJ, Yu KH, Ryu JS. Development of a new precursor-minimizing base control method and its application for the automated synthesis and SPE purification of [F]fluoromisonidazole ([F]FMISO). J Label Compd Radiopharm. 2013;56:731–5.
  86. Lemaire CF, Aerts JJ, Voccia S, Libert LC, Mercier F, Goblet D, et al. Fast production of highly reactive no-carrier-added [F]fluoride for the labeling of radiopharmaceuticals. Angew Chemie Int Ed. 2010;49:3161–4.
  87. Leonardis F, De, Pascali G, Salvadori PA, Watts P, Pamme N. On-chip pre-concentration and complexation of [F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of positron emission tomography tracers. J Chromatogr A. 2011;1218(29):4714–9. [PMID: 21683956]
  88. Li Z, Cai H, Conti PS. Automated synthesis of 2′-deoxy-2′-[F]fluoro-5-methyl-1-β-D-arabinofuranosyluracil ([F]-FMAU) using a one reactor radiosynthesis module. Nucl Med Biol. 2011;38(2):201–6. [PMID: 21315275]
  89. Li S, Cai Z, Wu X, Holden D, Pracitto R, Kapinos M, et al. Synthesis and in vivo evaluation of a novel PET radiotracer for imaging of synaptic vesicle glycoprotein 2A (SV2A) in nonhuman primates. ACS Chem Neurosci. 2019a;10:1544–54. [PMID: 30396272]
  90. Li S, Cai Z, Zhang W, Holden D, Lin S, Finnema SJ, et al. Synthesis and in vivo evaluation of [F]UCB-J for PET imaging of synaptic vesicle glycoprotein 2A (SV2A). Eur J Nucl Med Mol Imaging. 2019b;46:1952–65. [PMID: 31175396]
  91. Liang SH, Wang L, Stephenson NA, Rotstein BH, Vasdev N. Facile F labeling of non-activated arenes via a spirocyclic iodonium(III) ylide method and its application in the synthesis of the mGluR 5 PET radiopharmaceutical [F]FPEB. Nat Protoc. 2019;14(5):1530–45. [PMID: 30980032]
  92. Lieberman BP, Ploessl K, Wang L, Qu W, Zha Z, Wise DR, et al. PET imaging of glutaminolysis in tumors by F-(2S,4R)4-Fluoroglutamine. J Nucl Med. 2011;52(12):1947–55. [PMID: 22095958]
  93. Lien VT, Klaveness J, Olberg DE. One-step synthesis of [F]cabozantinib for use in positron emission tomography imaging of c-Met. J Label Compd Radiopharm. 2018;61:11–7.
  94. Lindner S, Rensch C, Neubaur S, Neumeier M, Salvamoser R, Samper V, et al. Azeotropic drying free [F]FDG synthesis and its application to a lab-on-chip platform. Chem Commun R Soc Chem. 2016;52:729–32.
  95. Litchfield M, Wuest M, Glubrecht D, Wuest F. Radiosynthesis and biological evaluation of [F]triacoxib: a new radiotracer for PET imaging of COX–2. Mol. Pharm. 2020;17:251–61.
  96. Liu W, Huang X, Placzek MS, Krska SW, Mcquade P, Hooker JM, et al. Site-selective F fluorination of unactivated C–H bonds mediated by a manganese porphyrin. Chem Sci R Soc Chem. 2018;9:1168–72.
  97. Maisonial-besset A, Serre A, Ouadi A, Schmitt S, Canitrot D, Leal F, et al. Base/cryptand/metal-free automated nucleophilic radiofluorination of [F]FDOPA from iodonium salts: importance of hydrogen carbonate counterion. Eur J Org Chem. 2018;48:7058–65.
  98. Makaravage KJ, Brooks AF, Mossine AV, Sanford MS, Scott PJH. Copper-mediated radiofluorination of arylstannanes with [F]KF. Org Lett. 2016;18:5440–3. [PMID: 27718581]
  99. Marchand P, Lorilleux C, Gourand F, Sobrio F, Peyronnet D, Dhilly M, et al. Efficient radiosynthesis of 2-[F]fluoroadenosine: a new route to 2-[F]fluoropurine nucleosides. ACS Med Chem Lett. 2010;1:240–3. [PMID: 24900201]
  100. Marchand P, Ouadi A, Pellicioli M, Schuler J, Laquerriere P, Boisson F, et al. Automated and efficient radiosynthesis of [F]FLT using a low amount of precursor. Nucl Med Biol. 2016;43(8):520–7. [PMID: 27314451]
  101. Martarello L, Schaffrath C, Deng H, Gee AD, Lockhart A, Hagan DO. The first enzymatic method for C–F bond formation: the synthesis of 5′-[F]-fluoro-5′-deoxyadenosine for imaging with PET. J Label Compd Radiopharm. 2003;46:1181–9.
  102. Mathiessen B, Zhuravlev F. Automated solid-phase radiofluorination using polymer-supported phosphazenes. Molecules. 2013;18:10531–47. [PMID: 23999726]
  103. Mathiessen B, Jensen ATI, Zhuravlev F. Homogeneous nucleophilic radiofluorination and fluorination with phosphazene hydrofluorides. Chem - A Eur J. 2011;17:7796–805.
  104. McCammant MS, Thompson S, Brooks AF, Krska SW, Scott PJH, Sanford MS. Cu-mediated C-H F-fluorination of electron-rich (hetero)arenes. Org Lett. 2017;19(14):3939–42. [PMID: 28665619]
  105. Melean JC, Ermert J, Coenen HH. Enantiospecific synthesis of 2-[F]fluoro-L-phenylalanine and 2-[F]fluoro-L-tyrosine by isotopic exchange. Org Biomol Chem. 2011;9:765–9.
  106. Meleán JC, Ermert J, Coenen HH. A three-step radiosynthesis of 6-[F]fluoro-L-meta-tyrosine starting with [F]fluoride. J Label Compd Radiopharm. 2015;58:133–40.
  107. Moon BS, Park JH, Lee HJ, Kim JS, Kil HS, Lee BS, et al. Highly efficient production of [F]fallypride using small amounts of base concentration. Appl Radiat Isot. 2010;68(12):2279–84. [PMID: 20609592]
  108. Moon BS, Kil HS, Park JH, Kim JS, Park J, Chi DY, et al. Facile aromatic radiofluorination of [F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org Biomol Chem. 2011;9:8346–55. [PMID: 22057475]
  109. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, et al. Synthesis of [F]Arenes via the copper-mediated [F]fluorination of Boronic acids. Org Lett. 2015;17(23):5780–3. [PMID: 26568457]
  110. Mossine AV, Brooks AF, Ichiishi N, Makaravage KJ, Sanford MS, Scott PJH. Development of customized [F]fluoride elution techniques for the enhancement of copper-mediated late-stage radiofluorination. Sci Rep. 2017;7(233):1–9.
  111. Mossine AV, Brooks AF, Bernard-Gauthier V, Bailey JJ, Ichiishi N, Schirrmacher R, et al. Automated synthesis of PET radiotracers by copper-mediated F‐fluorination of organoborons: importance of the order of addition and competing protodeborylation. J Label Compd Radiopharm. 2018;61:228–36.
  112. Mossine AV, Tanzey SS, Brooks AF, Makaravage KJ, Ichiishi N, Miller JM, et al. One-pot synthesis of high molar activity 6-[F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor. Org Biomol Chem R Soc Chem. 2019;17(38):8701–5.
  113. Mukherjee J, Yang Z, Das MK, Brown T. Fluorinated benzamide neuroleptics-III. Development of (S)-N-[(1 -allyl-2-pyrrolidinyl)methyl]-5-(3-[F]fluoropropyl)-2,3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol. 1995;22(3):283–96. [PMID: 7627142]
  114. Mulholland GK, Mangner TJ, Jewett DM, Kilbourn MR. Polymer-supported nucleophilic radiolabeling reactions with [F]fluoride and [ C]cyanide ion on quaternary ammonium resins. J Label Compd Radiopharm. 1989;1–12:378–80.
  115. Nandy S, Rajan MGR, Korde A, Krishnamurthy NV. The possibility of a fully automated procedure for radiosynthesis of fluorine-18-labeled fluoromisonidazole using a simplified single, neutral alumina column purification procedure. Appl Radiat Isot. 2010;68(10):1937–43. [PMID: 20493720]
  116. Neumann K, Glaspy K, Vavere A, Snyder S, DiMagno S. Radiosynthesis of 4-fluorophenylalanine from a diaryliodonium salt precursor. J Nucl Med. 2013;54(Supplement 2):1069.
  117. Neumann CN, Hooker JM, Ritter T. Concerted nucleophilic aromatic substitution with F– and F–. Nature. 2016;534:369–73. [PMID: 27281221]
  118. Nkepang GN, Hedrick AF, Awasthi V, Gali H. Facile synthesis of para-[F]fluorohippurate via iodonium ylide-mediated radiofluorination for PET renography. Bioorg Med Chem Lett. 2016;26(2):479–83. [PMID: 26675438]
  119. Oh SJ, Chi DY, Mosdzianowski C, Kim JY, Gil HS, Kang SH, et al. Fully automated synthesis of [F]fluoromisonidazole using a conventional [F]FDG module. Nucl Med Biol. 2005;32:899–905. [PMID: 16253816]
  120. Orlovskaya V, Fedorova O, Nadporojskii M, Krasikova R. A fully automated azeotropic drying free synthesis of O-(2-[F]fluoroethyl)-L-tyrosine ([F]FET) using tetrabutylammonium tosylate. Appl Radiat Isot. 2019a;152:135–9. [PMID: 31299450]
  121. Orlovskaya VV, Modemann DJ, Kuznetsova OF, Fedorova OS, Urusova EA, Kolks N, et al. Alcohol-supported Cu-mediated F-fluorination of iodonium salts under “minimalist” conditions. Molecules. 2019b;24(3197):1–17.
  122. Parent EE, Dence CS, Sharp TL, Welch MJ, Katzenellenbogen JA. Synthesis and biological evaluation of a fluorine-18-labeled nonsteroidal androgen receptor antagonist, N-(3-[F]fluoro-4-nitronaphthyl)-cis-5-norbornene-endo-2,3-dicarboxylic imide. Nucl Med Biol. 2006;33:615–24. [PMID: 16843836]
  123. Pauton M, Gillet R, Aubert C, Bluet G, Gruss-Leleu F, Roy S, et al. The first radiosynthesis of 2-amino-5-[F]fluoro-pyridines via a “minimalist” radiofluorination/palladium-catalyzed amination sequence from anisyl(2-bromopyridinyl)iodonium triflate. Org Biomol Chem R Soc Chem. 2019;17:6359–63.
  124. Pees A, Sewing C, Vosjan MJWD, Tadino V, Herscheid JDM, Windhorst AD, et al. Fast and reliable generation of [F]triflyl fluoride, a gaseous [F]fluoride source. Chem Commun R Soc Chemi. 2018;54(72):10179–82.
  125. Perrio C, Schmitt S, Pla D, Gabbei FP, Chansaenpak K, Mestre-Voegtle B, et al. [F]-Fluoride capture and release: azeotropic drying free nucleophilic aromatic radiofluorination assisted by a phosphonium borane. Chem Commun. 2017;53:340–3.
  126. Prause M, Niedermoser S, Schirrmacher R, Wängler C, Wängler B. Synthetic approaches towards [F]fluoro-DOG1, a potential radiotracer for the imaging of gastrointestinal stromal tumors. Tetrahedron Lett. 2018;59(35):3332–5.
  127. Preshlock S, Calderwood S, Verhoog S, Tredwell M, Huiban M, Hienzsch A, et al. Enhanced copper-mediated F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun. 2016a;52(54):8361–4.
  128. Preshlock S, Tredwell M, Gouverneur V. F-labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev. 2016b;116(2):719–66. [PMID: 26751274]
  129. Qu W, Zha Z, Ploessl K, Lieberman BP, Zhu L, Wise DR, et al. Synthesis of optically pure 4-fluoro-glutamines as potential metabolic imaging agents for tumors. J Am Chem Soc. 2011;133(4):1122–33. [PMID: 21190335]
  130. Ravert HT, Holt DP, Chen Y, Mease RC, Fan H, Pomper MG, et al. An improved synthesis of the radiolabeled prostate-specific membrane antigen inhibitor, [F]DCFPyL. J Label Compd Radiopharm. 2016;59:439–50.
  131. Reischl G, Kienzle GJ, Machulla H. Electrochemical radiofluorination: labeling of benzene with [F]fluoride by nucleophilic substitution. J Radioanal Nucl Chem. 2002;254(2):409–11.
  132. Rensch C, Lindner S, Salvamoser R, Leidner S, Böld C, Samper V, et al. A solvent resistant lab-on-chip platform for radiochemistry applications. Lab Chip. 2014;14:2556–64. [PMID: 24879121]
  133. Richarz R, Krapf P, Zarrad F, Urusova EA, Neumaier B, Zlatopolskiy BD. Neither azeotropic drying, nor base nor other additives: a minimalist approach to F-labeling. Org Biomol Chem R Soc Chem. 2014;12:8094–9.
  134. Rotstein BH, Stephenson NA, Vasdev N, Liang SH. Spirocyclic hypervalent iodine(III)-mediated radiofluorination of non-activated and hindered aromatics. Nat Commun Nat Publ Group. 2014;5(4365):1–7.
  135. Rotstein BH, Wang L, Liu RY, Patteson J, Kwan EE, Vasdev N, et al. Mechanistic studies and radiofluorination of structurally diverse pharmaceuticals with spirocyclic iodonium(III) ylides. Chem Sci R Soc Chem. 2016;7:4407–17.
  136. Sadeghi S, Liang V, Cheung S, Woo S, Wu C, Ly J, et al. Reusable electrochemical cell for rapid separation of [F]fluoride from [O]water for flow-through synthesis of F-labeled tracers. Appl Radiat Isot. 2013;75:85–94. [PMID: 23474380]
  137. Saiki H, Iwata R, Nakanishi H, Wong R, Ishikawa Y, Furumoto S, et al. Electrochemical concentration of no-carrier-added [F]fluoride from [O] water in a disposable microfluidic cell for radiosynthesis of F-labeled radiopharmaceuticals. Appl Radiat Isot. 2010;68(9):1703–8. [PMID: 20189817]
  138. Saito F, Nagashima Y, Goto A, Iwaki M, Takahashi N, Oka T, et al. Electrochemical transfer of F from O water to aprotic polar solvent. Appl Radiat Isot. 2007;65:524–7. [PMID: 17344050]
  139. Salvador B, Luque A, Fernandez-maza L, Corral A, Orta D, Fernández I, et al. Disposable PDMS chip with integrated [F]fluoride pre-concentration cartridge for radiopharmaceuticals. J Microelectromech Syst. 2017;26(6):1442–8.
  140. Schäfer D, Weiß P, Ermert J, Meleán JC, Zarrad F, Neumaier B. Preparation of no-carrier-added 6-[F]fluoro-L-tryptophan via Cu-mediated radiofluorination. Eur J Org Chem. 2016;27:4621–8.
  141. Seo JW, Lee BS, Lee SJ, Oh SJ, Chi DY. Fast and easy drying method for the preparation of activated [F]fluoride using polymer cartridge. Bull Korean Chem Soc. 2011;32(1):71–6.
  142. Sergeev ME, Morgia F, Lazari M, Wang CJ, Van Dam RM. Titania-catalyzed radiofluorination of tosylated precursors in highly aqueous medium. J Am Chem Soc. 2015;137:5686–94. [PMID: 25860121]
  143. Shamni O, Nebeling B, Grievink H, Mishani E. Fine-tuning of the automated [F]PSMA‐1007 radiosynthesis. J Label Compd Radiopharm. 2019;62:252–8.
  144. Shi H, Braun A, Wang L, Liang SH, Vasdev N, Ritter T. Synthesis of F-difluoromethylarenes from aryl (pseudo) halides. Angew. Chemie Int Ed. 2016;55(36):10786–90.
  145. Shoup TM, Yokell DL, Rice PA, Jackson RN, Livni E, Johnson KA, et al. A concise radiosynthesis of the tau radiopharmaceutical, [F]T807. J Label Compd Radiopharm. 2013;56:736–40.
  146. Singleton TA, Bdair H, Bailey JJ, Choi S, Aliaga A, Rosa-Neto P, et al. Efficient radiosynthesis and preclinical evaluation of [F]FOMPyD as a positron emission tomography tracer candidate for TrkB/C receptor imaging. J Label Compd Radiopharm. 2020;63(3):144–50.
  147. Stephenson NA, Holland JP, Kassenbrock A, Yokell DL, Livni E, Liang SH, et al. Iodonium ylide-mediated radiofluorination of F-FPEB and validation for human use. J Nucl Med. 2015;56(3):489–92. [PMID: 25655630]
  148. Strebl MG, Campbell AJ, Zhao W-N, Schroeder FA, Riley MM, Chindavong PS, et al. HDAC6 brain mapping with [F]Bavarostat enabled by a Ru-mediated deoxyfluorination. ACS Cent Sci. 2017;3:1006–14. [PMID: 28979942]
  149. Suehiro M, Vallabhajosula S, Goldsmith SJ, Ballon DJ. Investigation of the role of the base in the synthesis of [F]FLT. Appl Radiat Isot. 2007;65:1350–8. [PMID: 17919915]
  150. Tang T, Gill HS, Ogasawara A, Tinianow JN, Vanderbilt AN, Williams S, et al. Preparation and evaluation of L- and D-5-[F]fluorotryptophan as PET imaging probes for indoleamine and tryptophan 2,3-dioxygenases. Nucl Med Biol. 2017;51:10–7. [PMID: 28511073]
  151. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR. Routine production of 2-deoxy-2-[F]fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol. 1990;17(3):273–9.
  152. Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, et al. A general copper-mediated nucleophilic F fluorination of arenes. Angew Chemie Int Ed. 2014;53(30):7751–5.
  153. Van Der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Sci Rev R Soc Chem. 2017;46(15):4709–73.
  154. Vavere A, Butch E, Shulkin B, Snyder S. Synthesis and preliminary validation of 6-[F]-Fluorodopamine ([F]FDA) as a PET tracer for neuroblastoma. J Nucl Med. 2014;55(Supplement 1):1410.
  155. Vavere AL, Neumann KD, Butch ER, Hu B, Dimagno SG, Snyder SE. Improved, one-pot synthesis of 6‐[F]fluorodopamine and quality control testing for use in patients with neuroblastoma. J Label Compd Radiopharm. 2018;61:1069–80.
  156. Wagner FM, Ermert J, Coenen HH. Three-step, ‘“one-pot”’ radiosynthesis of 6-fluoro-3,4-dihydroxy-L-phenylalanine by isotopic exchange. J Nucl Med. 2009;50(10):1724–30. [PMID: 19759110]
  157. Wang L, Cheng R, Fujinaga M, Yang J, Zhang Y, Hatori A, et al. A facile Radiolabeling of [F]FDPA via Spirocyclic Iodonium Ylides: preliminary PET Imaging Studies in Preclinical Models of Neuroinflammation. J Med Chem. 2017;60(12):5222–7. [PMID: 28530834]
  158. Wang L, Yao S, Tang R, Zhu H, Zhang L, Gong J, et al. A concisely automated synthesis of TSPO radiotracer [F]FDPA based on spirocyclic iodonium ylide method and validation for human use. J Label Compd Radiopharm. 2020a;63(3):119–28.
  159. Wang M, Glick-Wilson BE, Zheng QH. Fully automated radiosynthesis and quality control of estrogen receptor targeting radiopharmaceutical 16α-[F]fluoroestradiol ([F]FES) for human breast cancer imaging. Appl Radiat Isot. 2020b;160:109109. [PMID: 32174461]
  160. Wessmann SH, Henriksen G, Wester HJ. Cryptate mediated nucleophilic F-fluorination without azeotropic drying. NuklearMedizin. 2012;51(1):1–8. [PMID: 21989864]
  161. Winkler M, Domarkas J, Schweiger LF, Hagan DO. Fluorinase-coupled base swaps: synthesis of [F]-5′-deoxy-5′-fluorouridines. Angew Chemie Int Ed. 2008;47:10141–3.
  162. Wong R, Iwata R, Saiki H, Furumoto S, Ishikawa Y, Ozeki E. Reactivity of electrochemically concentrated anhydrous [F]fluoride for microfluidic radiosynthesis of F-labeled compounds. Appl Radiat Isot. 2012;70(1):193–9. [PMID: 22001413]
  163. Wu C, Chen Y, Lin J, Li J, Chen J, Hsieh T, et al. Development of a novel radioligand for imaging 18-kD translocator protein (TSPO) in a rat model of Parkinson’s disease. BMC Med Imaging. 2019;19(78):1–9.
  164. Xu P, Zhao D, Berger F, Hamad A, Rickmeier J, Petzold R, et al. Site-selective late-stage aromatic [F]fluorination via aryl sulfonium salts. Angew Chemie Int Ed. 2020;59(5):1956–60.
  165. Zarrad F, Zlatopolskiy BD, Krapf P, Zischler J, Neumaier B. A practical method for the preparation of F-labeled aromatic amino acids from nucleophilic [F]fluoride and stannyl precursors for electrophilic radiohalogenation. Molecules. 2017;22(2231):1–25.
  166. Zhang X, Basuli F, Shi Z, Xu B, Blackman B, Choyke PL, et al. Automated synthesis of [F](2S,4R)-4-fluoroglutamine on a GE TRACERlab TM FX-N pro module. Appl Radiat Isot. 2016;112:110–4. [PMID: 27019029]
  167. Zhang Z, Lau J, Kuo H, Zhang C, Colpo N, Bénard F, et al. Synthesis and evaluation of F-labeled CJ-042794 for imaging prostanoid EP4 receptor expression in cancer with positron emission tomography. Bioorg Med Chem Lett. 2017a;27(10):2094–8. [PMID: 28377057]
  168. Zhang Z, Lau J, Zhang C, Colpo N, Nocentini A, Supuran CT, et al. Design, synthesis and evaluation of F-labeled cationic carbonic anhydrase IX inhibitors for PET imaging. J Enzyme Inhib Med Chem. 2017b;32(1):722–30. [PMID: 28385087]
  169. Zhang B, Fraser BH, Klenner MA, Chen Z, Liang SH, Massi M, et al. [F]ethenesulfonyl fluoride as a practical radiofluoride relay reagent. Chem A Eur J. 2019a;25:7613–7.
  170. Zhang X, Basuli F, Swenson RE. An azeotropic drying-free approach for copper‐mediated radiofluorination without addition of base. J Label Compd Radiopharm. 2019b;62:139–45.
  171. Zischler J, Krapf P, Richarz R, Zlatopolskiy BD, Neumaier B. Automated synthesis of 4-[F]fluoroanisole, [F]DAA1106 and 4-[F]FPhe using Cu-mediated radio fluorination under “minimalist” conditions. Appl Radiat Isot. 2016;115:133–7. [PMID: 27372807]
  172. Zischler J, Kolks N, Modemann D, Neumaier B, Zlatopolskiy BD. Alcohol-enhanced Cu-mediated radiofluorination. Chem A Eur J. 2017;23(14):3251–6.
  173. Zlatopolskiy BD, Zischler J, Krapf P, Zarrad F, Urusova EA, Kordys E, et al. Copper-mediated aromatic radiofluorination revisited: efficient production of PET tracers on a preparative scale. Chem A Eur J. 2015;21(15):5972–9.
  174. Zlatopolskiy BD, Zischler J, Schafer D, Urusova EA, Guliyev M, Bannykh O, et al. Discovery of 7–[F]fluorotryptophan as a novel positron emission tomography (PET) probe for the visualization of tryptophan metabolism in vivo. J Med Chem. 2018;61:189–206. [PMID: 29053271]

Word Cloud

Created with Highcharts 10.0.0PETdevelopmentsreactive[F]fluorideusedFluorine-18tracersynthesisnewradiolabelingmethodologiespreparationtracerslastdecadedryingproductionuseproceduresBACKGROUND:Positronemissiontomographypowerfulnon-invasivepreclinicalclinicalnuclearimagingtechniquediseasediagnosistherapyassessmentpredominantradionuclideimpressivevariety'late-stage'F-labeledappearedorderimproveefficiencylabelingreactionMAINBODY:Despiteoneoutstandingchallengeearlykeystepsprocessremains:oxygen-18enrichedwater[O]HOsignificantchangestrappingelutionstagesintroducedreviewprovidesoverviewstrategiesrecentCONCLUSION:Improvedmodifiedevencompletelyfluorine-18work-updevelopedwidespreadbase-sensitivenucleophilicF-fluorinationreactionsmanypromisingmayleadstandardizedroutinebroadscaleStatearttowardsRadiopharmaceuticalchemistry

Similar Articles

Cited By