Whole human-brain mapping of single cortical neurons for profiling morphological diversity and stereotypy.

Xiaofeng Han, Shuxia Guo, Nan Ji, Tian Li, Jian Liu, Xiangqiao Ye, Yi Wang, Zhixi Yun, Feng Xiong, Jing Rong, Di Liu, Hui Ma, Yujin Wang, Yue Huang, Peng Zhang, Wenhao Wu, Liya Ding, Michael Hawrylycz, Ed Lein, Giorgio A Ascoli, Wei Xie, Lijuan Liu, Liwei Zhang, Hanchuan Peng
Author Information
  1. Xiaofeng Han: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  2. Shuxia Guo: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  3. Nan Ji: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  4. Tian Li: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  5. Jian Liu: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  6. Xiangqiao Ye: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  7. Yi Wang: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  8. Zhixi Yun: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  9. Feng Xiong: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  10. Jing Rong: Institute for Brain and Intelligence, Southeast University, Nanjing, China.
  11. Di Liu: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  12. Hui Ma: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  13. Yujin Wang: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  14. Yue Huang: China National Clinical Research Center for Neurological Diseases, Beijing, China. ORCID
  15. Peng Zhang: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  16. Wenhao Wu: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
  17. Liya Ding: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  18. Michael Hawrylycz: Allen Institute for Brain Science, Seattle, WA, USA.
  19. Ed Lein: Allen Institute for Brain Science, Seattle, WA, USA. ORCID
  20. Giorgio A Ascoli: Center for Neural Informatics, Krasnow Institute for Advanced Studies and Bioengineering Department, College of Engineering and Computing, George Mason University, Fairfax, VA, USA. ORCID
  21. Wei Xie: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  22. Lijuan Liu: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID
  23. Liwei Zhang: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. ORCID
  24. Hanchuan Peng: Institute for Brain and Intelligence, Southeast University, Nanjing, China. ORCID

Abstract

Quantifying neuron morphology and distribution at the whole-brain scale is essential to understand the structure and diversity of cell types. It is exceedingly challenging to reuse recent technologies of single-cell labeling and whole-brain imaging to study human brains. We propose adaptive cell tomography (ACTomography), a low-cost, high-throughput, and high-efficacy tomography approach, based on adaptive targeting of individual cells. We established a platform to inject dyes into cortical neurons in surgical tissues of 18 patients with brain tumors or other conditions and one donated fresh postmortem brain. We collected three-dimensional images of 1746 cortical neurons, of which 852 neurons were reconstructed to quantify local dendritic morphology, and mapped to standard atlases. In our data, human neurons are more diverse across brain regions than by subject age or gender. The strong stereotypy within cohorts of brain regions allows generating a statistical tensor field of neuron morphology to characterize anatomical modularity of a human brain.

References

  1. Sci Data. 2018 Feb 27;5:180006 [PMID: 29485626]
  2. Cereb Cortex. 2006 Jul;16(7):990-1001 [PMID: 16195469]
  3. Genome Res. 1997 May;7(5):401-9 [PMID: 9149936]
  4. Nature. 2018 Apr;556(7702):429-432 [PMID: 29691509]
  5. J Comp Neurol. 2016 Nov 1;524(16):3127-481 [PMID: 27418273]
  6. Neuroimage. 2023 Feb 1;266:119807 [PMID: 36513290]
  7. Cereb Cortex. 2009 Sep;19(9):2131-44 [PMID: 19126800]
  8. Cereb Cortex. 2023 Mar 10;33(6):2857-2878 [PMID: 35802476]
  9. Science. 2013 Jun 21;340(6139):1472-5 [PMID: 23788795]
  10. Elife. 2019 Feb 07;8: [PMID: 30730291]
  11. Nat Neurosci. 2019 Jul;22(7):1182-1195 [PMID: 31209381]
  12. Nat Methods. 2016 Mar;13(3):192-4 [PMID: 26914202]
  13. Neuron. 2021 May 5;109(9):1449-1464.e13 [PMID: 33789083]
  14. Sci Rep. 2017 Aug 24;7(1):9325 [PMID: 28839271]
  15. Nat Neurosci. 2018 Sep;21(9):1185-1195 [PMID: 30150662]
  16. Cereb Cortex. 2021 Jul 5;31(8):3592-3609 [PMID: 33723567]
  17. Nat Biotechnol. 2016 Feb;34(2):199-203 [PMID: 26689543]
  18. Nat Biotechnol. 2010 Apr;28(4):348-53 [PMID: 20231818]
  19. Arch Neurol. 1996 Dec;53(12):1277-83 [PMID: 8970455]
  20. J Neurosci. 2018 Dec 5;38(49):10467-10478 [PMID: 30355632]
  21. Nature. 2021 Oct;598(7879):111-119 [PMID: 34616062]
  22. J Neurosci. 2001 Sep 1;21(17):RC163 [PMID: 11511694]
  23. Nature. 2021 Oct;598(7879):151-158 [PMID: 34616067]
  24. PLoS Comput Biol. 2018 Jun 13;14(6):e1006221 [PMID: 29897896]
  25. Cell Rep. 2015 Mar 10;10(9):1450-1458 [PMID: 25753411]
  26. Nature. 1953 Feb 28;171(4348):387-8 [PMID: 13036904]
  27. Nature. 2021 Oct;598(7879):174-181 [PMID: 34616072]
  28. PLoS Biol. 2020 Apr 3;18(4):e3000678 [PMID: 32243449]
  29. Nat Protoc. 2008;3(5):866-76 [PMID: 18451794]
  30. Cell. 2019 Sep 19;179(1):268-281.e13 [PMID: 31495573]
  31. Nat Commun. 2019 Aug 2;10(1):3474 [PMID: 31375678]
  32. Nature. 2012 Sep 20;489(7416):391-399 [PMID: 22996553]
  33. Nat Biotechnol. 2021 Dec;39(12):1521-1528 [PMID: 34312500]
  34. Cereb Cortex. 2021 Aug 26;31(10):4742-4764 [PMID: 33999122]
  35. J Comp Neurol. 2021 May 1;529(7):1308-1326 [PMID: 32869318]
  36. Cell. 2015 Oct 08;163(2):456-92 [PMID: 26451489]
  37. Cereb Cortex. 2020 Mar 21;30(2):730-752 [PMID: 31268532]
  38. iScience. 2020 Dec 08;24(1):101906 [PMID: 33385111]
  39. Science. 2017 Oct 6;358(6359):64-69 [PMID: 28983044]
  40. Sci Rep. 2015 Dec 22;5:18426 [PMID: 26689553]
  41. Front Neuroanat. 2011 May 16;5:29 [PMID: 21647212]
  42. Neuron. 2021 Sep 15;109(18):2914-2927.e5 [PMID: 34534454]
  43. Front Neurosci. 2017 Aug 11;11:419 [PMID: 28848376]
  44. Neuro Oncol. 2021 Aug 2;23(8):1231-1251 [PMID: 34185076]
  45. Nature. 2021 Oct;598(7879):86-102 [PMID: 34616075]
  46. Front Neurosci. 2017 Mar 13;11:118 [PMID: 28348514]
  47. Science. 2021 Jan 29;371(6528): [PMID: 33509999]
  48. Neuroinformatics. 2015 Oct;13(4):487-99 [PMID: 26036213]
  49. Cereb Cortex. 2001 Jun;11(6):558-71 [PMID: 11375917]
  50. Front Neural Circuits. 2016 Sep 21;10:74 [PMID: 27708563]
  51. Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499 [PMID: 31501331]
  52. Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12536-41 [PMID: 19622738]
  53. Neuroscience. 2006 Sep 1;141(3):1107-12 [PMID: 16797136]
  54. Front Neuroanat. 2014 Apr 23;8:24 [PMID: 24795574]
  55. Science. 2022 Jul;377(6601):56-62 [PMID: 35771910]
  56. Elife. 2023 May 30;12: [PMID: 37249212]

Grants

  1. R01 NS039600/NINDS NIH HHS
  2. R01 NS086082/NINDS NIH HHS
  3. RF1 MH128693/NIMH NIH HHS
  4. U01 MH114829/NIMH NIH HHS

MeSH Term

Humans
Neurons
Brain Mapping
Brain
Imaging, Three-Dimensional
Head

Word Cloud

Created with Highcharts 10.0.0neuronsbrainmorphologyhumancorticalneuronwhole-braindiversitycelladaptivetomographyregionsstereotypyQuantifyingdistributionscaleessentialunderstandstructuretypesexceedinglychallengingreuserecenttechnologiessingle-celllabelingimagingstudybrainsproposeACTomographylow-costhigh-throughputhigh-efficacyapproachbasedtargetingindividualcellsestablishedplatforminjectdyessurgicaltissues18patientstumorsconditionsonedonatedfreshpostmortemcollectedthree-dimensionalimages1746852reconstructedquantifylocaldendriticmappedstandardatlasesdatadiverseacrosssubjectagegenderstrongwithincohortsallowsgeneratingstatisticaltensorfieldcharacterizeanatomicalmodularityWholehuman-brainmappingsingleprofilingmorphological

Similar Articles

Cited By