No Link Between Speech-in-Noise Perception and Auditory Sensory Memory - Evidence From a Large Cohort of Older and Younger Listeners.

Roberta Bianco, Maria Chait
Author Information
  1. Roberta Bianco: Ear Institute, University College London, London, UK. ORCID
  2. Maria Chait: Ear Institute, University College London, London, UK. ORCID

Abstract

A growing literature is demonstrating a link between working memory (WM) and speech-in-noise (SiN) perception. However, the nature of this correlation and which components of WM might underlie it, are being debated. We investigated how SiN reception links with auditory sensory memory (aSM) - the low-level processes that support the short-term maintenance of temporally unfolding sounds. A large sample of old (���=���199, 60-79 yo) and young (���=���149, 20-35 yo) participants was recruited online and performed a coordinate response measure-based speech-in-babble task that taps listeners' ability to track a speech target in background noise. We used two tasks to investigate implicit and explicit aSM. Both were based on tone patterns overlapping in processing time scales with speech (presentation rate of tones 20 Hz; of patterns 2 Hz). We hypothesised that a link between SiN and aSM may be particularly apparent in older listeners due to age-related reduction in both SiN reception and aSM. We confirmed impaired SiN reception in the older cohort and demonstrated reduced aSM performance in those listeners. However, SiN and aSM did not share variability. Across the two age groups, SiN performance was predicted by a binaural processing test and age. The results suggest that previously observed links between WM and SiN may relate to the executive components and other cognitive demands of the used tasks. This finding helps to constrain the search for the perceptual and cognitive factors that explain individual variability in SiN performance.

Keywords

References

  1. Cortex. 2007 Jul;43(5):635-50 [PMID: 17715798]
  2. J Acoust Soc Am. 2001 Sep;110(3 Pt 1):1498-504 [PMID: 11572360]
  3. Hear Res. 2021 Jan;399:108074 [PMID: 33041093]
  4. Trends Hear. 2018 Jan-Dec;22:2331216518797259 [PMID: 30261828]
  5. PLoS Comput Biol. 2020 Nov 4;16(11):e1008304 [PMID: 33147209]
  6. Brain Cogn. 2009 Dec;71(3):259-64 [PMID: 19762140]
  7. J Neurosci. 2021 Jul 14;41(28):6116-6127 [PMID: 34083259]
  8. J Gerontol B Psychol Sci Soc Sci. 2005 Sep;60(5):P223-33 [PMID: 16131616]
  9. Prog Brain Res. 2008;169:323-38 [PMID: 18394484]
  10. Aging Ment Health. 2012;16(7):922-30 [PMID: 22533476]
  11. Trends Hear. 2020 Jan-Dec;24:2331216520973539 [PMID: 33272110]
  12. Neurobiol Aging. 2006 May;27(5):752-62 [PMID: 15908049]
  13. Brain Struct Funct. 2021 Sep;226(7):2019-2039 [PMID: 34100151]
  14. Brain Cogn. 2019 Nov;136:103614 [PMID: 31546175]
  15. Int J Audiol. 2008 Nov;47 Suppl 2:S53-71 [PMID: 19012113]
  16. J Acoust Soc Am. 2021 Aug;150(2):1390 [PMID: 34470275]
  17. Front Psychol. 2015 Sep 16;6:1394 [PMID: 26441769]
  18. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1188-93 [PMID: 21199948]
  19. PLoS Biol. 2007 Mar;5(3):e56 [PMID: 17311472]
  20. J Clin Exp Neuropsychol. 2011 Jan;33(1):101-11 [PMID: 20680884]
  21. Am J Audiol. 2013 Dec;22(2):303-5 [PMID: 23975122]
  22. Psychon Bull Rev. 2017 Aug;24(4):1158-1170 [PMID: 27896630]
  23. J Speech Lang Hear Res. 2017 May 24;60(5):1236-1245 [PMID: 28492912]
  24. Front Psychol. 2016 Aug 30;7:1268 [PMID: 27625615]
  25. Trends Hear. 2018 Jan-Dec;22:2331216518807400 [PMID: 30384803]
  26. Eur J Neurosci. 2011 Jan;33(1):189-96 [PMID: 21073548]
  27. Neurobiol Aging. 2012 Mar;33(3):625.e21-30 [PMID: 21530002]
  28. Psychon Bull Rev. 1996 Dec;3(4):422-33 [PMID: 24213976]
  29. Exp Aging Res. 2020 Jan-Feb;46(1):22-38 [PMID: 31750789]
  30. Neurobiol Aging. 2022 Jan;109:1-10 [PMID: 34634748]
  31. Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7605-E7614 [PMID: 30037997]
  32. Mem Cognit. 2004 Sep;32(6):956-64 [PMID: 15673183]
  33. PLoS One. 2014 Sep 17;9(9):e107720 [PMID: 25229622]
  34. J Acoust Soc Am. 2014 Jan;135(1):342-51 [PMID: 24437774]
  35. Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1797-802 [PMID: 15665101]
  36. J Neurosci. 2016 Apr 20;36(16):4492-505 [PMID: 27098693]
  37. Sci Rep. 2020 Aug 19;10(1):13997 [PMID: 32814792]
  38. Trends Cogn Sci. 2017 Feb;21(2):111-124 [PMID: 28063661]
  39. J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ [PMID: 5541744]
  40. Appl Neuropsychol. 2000;7(4):252-8 [PMID: 11296689]
  41. Clin Neurophysiol. 2009 Mar;120(3):453-63 [PMID: 19181570]
  42. Trends Amplif. 2006 Mar;10(1):29-59 [PMID: 16528429]
  43. Nat Rev Neurosci. 2003 Oct;4(10):829-39 [PMID: 14523382]
  44. Dev Psychol. 2006 Nov;42(6):1089-102 [PMID: 17087544]
  45. Neuroimage. 2006 Aug 15;32(2):880-91 [PMID: 16702002]
  46. Exp Aging Res. 1996 Apr-Jun;22(2):171-84 [PMID: 8735151]
  47. Front Psychol. 2015 Jun 16;6:782 [PMID: 26136699]
  48. Front Aging Neurosci. 2016 May 06;8:90 [PMID: 27199737]
  49. J Acoust Soc Am. 2000 Feb;107(2):1065-6 [PMID: 10687719]
  50. Neurobiol Aging. 2019 Nov;83:73-85 [PMID: 31585369]
  51. Curr Dir Psychol Sci. 2014 Aug 1;23(4):252-256 [PMID: 25382943]
  52. Exp Psychol. 2004;51(4):240-8 [PMID: 15620225]
  53. Psychol Bull. 1984 Sep;96(2):341-70 [PMID: 6385047]
  54. Cortex. 2018 Dec;109:92-103 [PMID: 30312781]
  55. Neuropsychologia. 2009 Feb;47(3):693-703 [PMID: 19124032]
  56. Neuroscience. 2018 Oct 1;389:54-73 [PMID: 28782642]
  57. Trends Hear. 2020 Jan-Dec;24:2331216520960861 [PMID: 33073727]
  58. Psychol Aging. 2012 Jun;27(2):384-98 [PMID: 21823798]
  59. Trends Hear. 2021 Jan-Dec;25:23312165211025941 [PMID: 34170748]
  60. Cereb Cortex. 2021 Feb 5;31(3):1582-1596 [PMID: 33136138]
  61. J Speech Lang Hear Res. 2020 Apr 27;63(4):1282-1298 [PMID: 32213149]
  62. Neurobiol Aging. 2020 May;89:71-82 [PMID: 32057529]
  63. Int J Psychophysiol. 2015 Feb;95(2):175-83 [PMID: 24956028]
  64. Int J Aging Hum Dev. 2007;65(4):301-14 [PMID: 18351173]
  65. J Gerontol B Psychol Sci Soc Sci. 2002 Mar;57(2):P101-15 [PMID: 11867658]
  66. J Neurosci. 2018 Jun 13;38(24):5466-5477 [PMID: 29773757]
  67. Cereb Cortex. 2006 Jun;16(6):835-48 [PMID: 16151180]
  68. Psychol Bull. 1999 Nov;125(6):826-59 [PMID: 10589304]
  69. J Acoust Soc Am. 2012 Apr;131(4):2968-86 [PMID: 22501074]
  70. Neurobiol Aging. 2020 Apr;88:128-136 [PMID: 32035848]
  71. Am J Audiol. 2013 Dec;22(2):313-5 [PMID: 23975124]
  72. Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;372(1714): [PMID: 28044016]
  73. Mem Cognit. 1975 Jan;3(1):7-18 [PMID: 24203819]
  74. PLoS One. 2017 Oct 19;12(10):e0186773 [PMID: 29049416]
  75. Eur Arch Otorhinolaryngol. 2021 Jul;278(7):2577-2583 [PMID: 33386969]
  76. Front Aging Neurosci. 2016 Mar 01;8:39 [PMID: 26973514]
  77. Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E616-25 [PMID: 26787854]
  78. Clin Interv Aging. 2020 Mar 17;15:395-406 [PMID: 32231429]
  79. Trends Cogn Sci. 2009 Dec;13(12):532-40 [PMID: 19828357]
  80. Neuroimage. 2021 Sep;238:118238 [PMID: 34098064]
  81. Int J Audiol. 2016 Nov;55(11):623-42 [PMID: 27589015]
  82. Psychol Sci. 2020 Mar;31(3):316-331 [PMID: 32074021]
  83. Brain Cogn. 2017 Apr;113:10-22 [PMID: 28088063]
  84. Nat Rev Neurol. 2015 Mar;11(3):166-75 [PMID: 25686757]
  85. Behav Res Methods. 2021 Aug;53(4):1551-1562 [PMID: 33300103]
  86. Ageing Res Rev. 2015 Sep;23(Pt B):154-66 [PMID: 26123097]
  87. J Speech Lang Hear Res. 2011 Dec;54(6):1682-701 [PMID: 21930615]
  88. Hear Res. 2007 Jan;223(1-2):29-47 [PMID: 17107767]
  89. Int J Psychophysiol. 2009 Jan;71(1):64-9 [PMID: 18725253]
  90. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  91. Ear Hear. 2016 Sep-Oct;37(5):593-602 [PMID: 27232071]
  92. Trends Hear. 2017 Jan-Dec;21:2331216517744675 [PMID: 29237334]
  93. Clin Neurophysiol. 2007 Dec;118(12):2544-90 [PMID: 17931964]
  94. Int J Psychophysiol. 2013 Nov;90(2):165-71 [PMID: 23831479]
  95. Psychol Aging. 2014 Sep;29(3):672-83 [PMID: 25089854]
  96. J Am Acad Audiol. 2011 Mar;22(3):156-67 [PMID: 21545768]
  97. Neuron. 2010 May 27;66(4):610-8 [PMID: 20510864]
  98. Front Aging Neurosci. 2015 Jan 13;6:347 [PMID: 25628563]
  99. Nat Neurosci. 2014 Mar;17(3):347-56 [PMID: 24569831]
  100. J Acoust Soc Am. 2021 Sep;150(3):1735 [PMID: 34598638]
  101. J Neurosci. 2000 Jan 15;20(2):791-7 [PMID: 10632608]
  102. Philos Trans R Soc Lond B Biol Sci. 1992 Jun 29;336(1278):367-73 [PMID: 1354376]
  103. Curr Res Neurobiol. 2023 Nov 07;5:100115 [PMID: 38020808]
  104. J Acoust Soc Am. 1995 Jan;97(1):593-608 [PMID: 7860836]
  105. Percept Psychophys. 1989 May;45(5):417-26 [PMID: 2726404]
  106. Ann N Y Acad Sci. 2018 May 9;: [PMID: 29744897]
  107. J Acoust Soc Am. 1992 May;91(5):2881-93 [PMID: 1629481]
  108. Sci Rep. 2019 Nov 14;9(1):16771 [PMID: 31728002]
  109. Psychol Aging. 2011 Mar;26(1):85-91 [PMID: 20718539]
  110. Elife. 2020 May 18;9: [PMID: 32420868]

Grants

  1. BB/P003745/1/Biotechnology and Biological Sciences Research Council
  2. /Department of Health

MeSH Term

Humans
Aged
Speech
Hearing
Noise
Speech Perception
Memory, Short-Term

Word Cloud

Created with Highcharts 10.0.0SiNaSMmemoryWMreceptionperformancelinkHowevercomponentslinks-short-termyoonlinespeechusedtwotaskspatternsprocessingHzmayolderlistenersvariabilityagecognitivegrowingliteraturedemonstratingworkingspeech-in-noiseperceptionnaturecorrelationmightunderliedebatedinvestigatedauditorysensorylow-levelprocessessupportmaintenancetemporallyunfoldingsoundslargesampleold���=���19960-79young���=���14920-35participantsrecruitedperformedcoordinateresponsemeasure-basedspeech-in-babbletasktapslisteners'abilitytracktargetbackgroundnoiseinvestigateimplicitexplicitbasedtoneoverlappingtimescalespresentationratetones202hypothesisedparticularlyapparentdueage-relatedreductionconfirmedimpairedcohortdemonstratedreducedshareAcrossgroupspredictedbinauraltestresultssuggestpreviouslyobservedrelateexecutivedemandsfindinghelpsconstrainsearchperceptualfactorsexplainindividualLinkSpeech-in-NoisePerceptionAuditorySensoryMemoryEvidenceLargeCohortOlderYoungerListenersCRMageingtestingtemporalregularity

Similar Articles

Cited By (2)