The Effect of Exercise on Cardiovascular Autonomic Nervous Function in Patients with Diabetes: A Systematic Review.

Hidetaka Hamasaki
Author Information
  1. Hidetaka Hamasaki: Hamasaki Clinic, 2-21-4 Nishida, Kagoshima 890-0046, Japan. ORCID

Abstract

BACKGROUND: Diabetic neuropathy, including autonomic neuropathy, is a severe complication in patients with poorly controlled diabetes. Specifically, cardiovascular autonomic neuropathy (CAN) plays a significant prognostic role in cardiovascular morbidity and mortality. Exercise, an essential component of diabetes treatment, may have a therapeutic effect on patients with diabetes complicated by CAN. However, it remains unclear whether exercise has a therapeutic or protective effect in diabetes patients with CAN.
METHODS: The author conducted a systematic search of PubMed/MEDLINE, Embase, and The Cochrane Library, resulting in the identification of eight eligible randomized controlled trials for this review.
RESULTS: Exercise, including aerobic exercise combined with resistance training (RT), high-intensity interval training, and progressive RT, has shown a beneficial effect on cardiac autonomic function (CAF) in patients with type 2 diabetes, as measured by heart rate variability, heart rate recovery, and baroreflex sensitivity. However, most studies had low quality. Moreover, there were no relevant studies examining the effect of exercise on CAF in older patients, patients with poorly controlled diabetes, and patients with type 1 diabetes.
CONCLUSIONS: Exercise has the potential to manage patients with CAN by balancing sympathetic and parasympathetic nervous system functions; however, further studies are warranted in the future.

Keywords

References

  1. Arq Bras Cardiol. 2019 Jul 15;112(6):747-748 [PMID: 31314827]
  2. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  3. J Endocrinol Invest. 2017 Apr;40(4):425-430 [PMID: 27848229]
  4. Nutr Metab Cardiovasc Dis. 2018 Mar;28(3):226-233 [PMID: 29402509]
  5. J Diabetes Investig. 2016 Jul;7(4):615-21 [PMID: 27181277]
  6. Metabolism. 2014 Sep;63(9):1104-14 [PMID: 24997499]
  7. Diabetes Res Clin Pract. 2023 Jun;200:110670 [PMID: 37169307]
  8. Mayo Clin Proc. 2023 Sep 8;: [PMID: 37690012]
  9. BMJ. 2019 Aug 28;366:l4898 [PMID: 31462531]
  10. Chest. 2020 Jul;158(1S):S12-S20 [PMID: 32658647]
  11. Diabetes Care. 2010 Oct;33(10):2285-93 [PMID: 20876709]
  12. Sports Med Health Sci. 2021 Oct 11;3(4):183-193 [PMID: 35783368]
  13. J Diabetes Investig. 2020 Nov;11(6):1388-1402 [PMID: 32403204]
  14. Diabetes Metab Res Rev. 2011 Oct;27(7):639-53 [PMID: 21695768]
  15. Med Sci Sports Exerc. 2014 Oct;46(10):1960-7 [PMID: 24561814]
  16. Front Public Health. 2022 Apr 05;10:818816 [PMID: 35450123]
  17. Diabetes. 2003 Jul;52(7):1837-42 [PMID: 12829654]
  18. Diabetes Care. 2019 Jan;42(1):157-163 [PMID: 30455335]
  19. Brain Behav Immun. 2019 Jan;75:181-191 [PMID: 30394312]
  20. J Diabetes Investig. 2017 May;8(3):354-362 [PMID: 27736036]
  21. Handb Clin Neurol. 2019;160:407-418 [PMID: 31277865]
  22. Eur J Heart Fail. 2022 Apr;24(4):634-641 [PMID: 35064959]
  23. Diabetes Care. 2014 Sep;37(9):2616-21 [PMID: 24973438]
  24. J Am Med Dir Assoc. 2014 Apr;15(4):261-6 [PMID: 24508328]
  25. Nitric Oxide. 2016 Dec 30;61:1-9 [PMID: 27677584]
  26. Ann Phys Rehabil Med. 2017 Jan;60(1):27-35 [PMID: 27542313]
  27. World J Diabetes. 2018 Jan 15;9(1):1-24 [PMID: 29359025]
  28. PLoS One. 2021 May 17;16(5):e0251863 [PMID: 33999947]
  29. Diabetes Care. 2010 Dec;33(12):e147-67 [PMID: 21115758]
  30. Diabetes. 2016 Jan;65(1):209-15 [PMID: 26438610]
  31. Diabetes Metab J. 2019 Feb;43(1):3-30 [PMID: 30793549]
  32. Diabetes Care. 1985 Sep-Oct;8(5):491-8 [PMID: 4053936]
  33. Diabetes. 2005 Mar;54(3):744-50 [PMID: 15734851]
  34. Exp Physiol. 2020 Apr;105(4):590-599 [PMID: 31785115]
  35. Front Endocrinol (Lausanne). 2022 Dec 02;13:1015614 [PMID: 36531459]
  36. Life (Basel). 2023 Jun 14;13(6): [PMID: 37374177]
  37. J Diabetes. 2017 May;9(5):434-449 [PMID: 28044409]
  38. Front Endocrinol (Lausanne). 2023 Aug 17;14:1224353 [PMID: 37664832]
  39. Diab Vasc Dis Res. 2019 Jan;16(1):69-76 [PMID: 30541346]
  40. Ann Noninvasive Electrocardiol. 2022 Nov;27(6):e12996 [PMID: 35894768]
  41. Diabetes Metab Res Rev. 2011 Oct;27(7):654-64 [PMID: 21695761]
  42. Life (Basel). 2023 Jan 13;13(1): [PMID: 36676181]
  43. Cardiovasc Diabetol. 2018 May 2;17(1):64 [PMID: 29720185]
  44. Auton Neurosci. 2020 Dec;229:102722 [PMID: 33011523]
  45. BMJ Open Diabetes Res Care. 2021 Dec;9(2): [PMID: 34969689]
  46. Nat Rev Endocrinol. 2020 Jul;16(7):349-362 [PMID: 32398822]
  47. Clin Physiol Funct Imaging. 2014 Sep;34(5):327-39 [PMID: 24237859]
  48. Diabet Med. 2007 Apr;24(4):370-6 [PMID: 17335467]
  49. Diabetes. 2023 Jul 19;: [PMID: 37467433]
  50. Metabolism. 2013 May;62(5):609-21 [PMID: 23084034]
  51. Am J Physiol Heart Circ Physiol. 2012 Feb 1;302(3):H527-37 [PMID: 22101524]
  52. J Diabetes Investig. 2022 Mar;13(3):432-434 [PMID: 34779155]
  53. J Phys Ther Sci. 2016 Jul;28(7):2088-93 [PMID: 27512271]
  54. Diabetes Metab Syndr. 2023 May;17(5):102778 [PMID: 37178513]

Word Cloud

Created with Highcharts 10.0.0patientsdiabetesneuropathyautonomiccontrolledCANExerciseeffectexercisecardiovascularheartratestudiesincludingpoorlytherapeuticHoweverrandomizedtrainingRTfunctionCAFtypevariabilitybaroreflexsensitivitynervousBACKGROUND:DiabeticseverecomplicationSpecificallyplayssignificantprognosticrolemorbiditymortalityessentialcomponenttreatmentmaycomplicatedremainsunclearwhetherprotectiveMETHODS:authorconductedsystematicsearchPubMed/MEDLINEEmbaseCochraneLibraryresultingidentificationeighteligibletrialsreviewRESULTS:aerobiccombinedresistancehigh-intensityintervalprogressiveshownbeneficialcardiac2measuredrecoverylowqualityMoreoverrelevantexaminingolder1CONCLUSIONS:potentialmanagebalancingsympatheticparasympatheticsystemfunctionshoweverwarrantedfutureEffectCardiovascularAutonomicNervousFunctionPatientsDiabetes:SystematicReviewmellitusdiabetictrial

Similar Articles

Cited By