The Use of Artificial Intelligence to Predict the Prognosis of Patients Undergoing Central Nervous System Rehabilitation: A Narrative Review.

Min Cheol Chang, Jeoung Kun Kim, Donghwi Park, Jang Hwan Kim, Chung Reen Kim, Yoo Jin Choo
Author Information
  1. Min Cheol Chang: Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea. ORCID
  2. Jeoung Kun Kim: Department of Business Administration, School of Business, Yeungnam University, Gyeongsan-si 38541, Republic of Korea.
  3. Donghwi Park: Department of Rehabilitation Medicine, Daegu Fatima Hospital, Daegu 41199, Republic of Korea. ORCID
  4. Jang Hwan Kim: Department of Rehabilitation Technology, Graduate School of Hanseo University, Seosan, Chungcheongnam-do 31962, Republic of Korea.
  5. Chung Reen Kim: Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea. ORCID
  6. Yoo Jin Choo: Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea. ORCID

Abstract

Applications of machine learning in the healthcare field have become increasingly diverse. In this review, we investigated the integration of artificial intelligence (AI) in predicting the prognosis of patients with central nervous system disorders such as stroke, traumatic brain injury, and spinal cord injury. AI algorithms have shown promise in prognostic assessment, but challenges remain in achieving a higher prediction accuracy for practical clinical use. We suggest that accumulating more diverse data, including medical imaging and collaborative efforts among hospitals, can enhance the predictive capabilities of AI. As healthcare professionals become more familiar with AI, its role in central nervous system rehabilitation is expected to advance significantly, revolutionizing patient care.

Keywords

References

  1. Biomed Mater Devices. 2023 Feb 8;:1-8 [PMID: 36785697]
  2. Sens Int. 2021;2:100117 [PMID: 34806053]
  3. Stroke. 2019 May;50(5):1263-1265 [PMID: 30890116]
  4. Alzheimers Dement (N Y). 2022 Sep 29;8(1):e12351 [PMID: 36204350]
  5. J Clin Epidemiol. 2020 Jun;122:95-107 [PMID: 32201256]
  6. Sci Rep. 2021 Apr 12;11(1):7989 [PMID: 33846472]
  7. Curr Biol. 2019 Apr 1;29(7):R231-R236 [PMID: 30939301]
  8. SN Comput Sci. 2021;2(3):160 [PMID: 33778771]
  9. Pain. 2018 Apr;159(4):623-630 [PMID: 29194126]
  10. Multimed Tools Appl. 2023 May 4;:1-45 [PMID: 37362726]
  11. Neural Comput. 2006 Jul;18(7):1527-54 [PMID: 16764513]
  12. Eur Neurol. 2022;85(6):460-466 [PMID: 35738236]
  13. Neurol Int. 2022 Oct 21;14(4):841-874 [PMID: 36278693]
  14. Entropy (Basel). 2022 Apr 26;24(5): [PMID: 35626490]
  15. Chronic Dis Transl Med. 2023 Feb 21;9(2):164-176 [PMID: 37305105]
  16. Eur Neurol. 2022;85(4):273-279 [PMID: 35350014]
  17. Sci Rep. 2021 Apr 19;11(1):8499 [PMID: 33875716]
  18. Int J Med Inform. 2018 Mar;111:159-164 [PMID: 29425627]
  19. Sci Data. 2019 Oct 15;6(1):201 [PMID: 31615985]
  20. J Family Med Prim Care. 2022 Jun;11(6):2933-2937 [PMID: 36119176]
  21. J Am Med Inform Assoc. 2019 Oct 1;26(10):977-988 [PMID: 31220274]
  22. World Neurosurg. 2017 May;101:577-583 [PMID: 28242488]
  23. BMC Emerg Med. 2016 Aug 24;16(1):32 [PMID: 27553436]
  24. Nature. 2017 Feb 2;542(7639):115-118 [PMID: 28117445]
  25. Shanghai Arch Psychiatry. 2015 Apr 25;27(2):130-5 [PMID: 26120265]
  26. Spinal Cord. 2016 Dec;54(12):1145-1151 [PMID: 27241449]
  27. Nat Commun. 2017 Nov 7;8(1):1349 [PMID: 29116093]
  28. Lancet. 1975 Mar 1;1(7905):480-4 [PMID: 46957]
  29. Future Healthc J. 2019 Jun;6(2):94-98 [PMID: 31363513]
  30. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  31. J Neurotrauma. 2020 Jan 1;37(1):202-210 [PMID: 31359814]
  32. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  33. Ann Gastroenterol Surg. 2021 Oct 08;6(1):29-36 [PMID: 35106412]
  34. AJNR Am J Neuroradiol. 2019 Apr;40(4):737-744 [PMID: 30923086]
  35. J Healthc Eng. 2022 Apr 18;2022:4653923 [PMID: 35480146]
  36. J Clin Neurosci. 2022 Feb;96:74-79 [PMID: 34998207]
  37. Neuroimage Clin. 2013 Mar 22;2:424-33 [PMID: 24179796]
  38. Curr Genomics. 2021 Dec 16;22(4):291-300 [PMID: 35273459]
  39. Am J Phys Med Rehabil. 2019 Nov;98(11):e128-e129 [PMID: 30839314]
  40. Patterns (N Y). 2021 Oct 08;2(10):100347 [PMID: 34693373]
  41. J Korean Med Sci. 2023 May 22;38(20):e147 [PMID: 37218350]

Word Cloud

Created with Highcharts 10.0.0AIcentralnervoussystemhealthcarebecomediverseartificialintelligenceprognosisinjurypredictionrehabilitationApplicationsmachinelearningfieldincreasinglyreviewinvestigatedintegrationpredictingpatientsdisordersstroketraumaticbrainspinalcordalgorithmsshownpromiseprognosticassessmentchallengesremainachievinghigheraccuracypracticalclinicalusesuggestaccumulatingdataincludingmedicalimagingcollaborativeeffortsamonghospitalscanenhancepredictivecapabilitiesprofessionalsfamiliarroleexpectedadvancesignificantlyrevolutionizingpatientcareUseArtificialIntelligencePredictPrognosisPatientsUndergoingCentralNervousSystemRehabilitation:NarrativeReview

Similar Articles

Cited By