Thrombospondin-1 proteomimetic polymers exhibit anti-angiogenic activity in a neovascular age-related macular degeneration mouse model.

Wonmin Choi, Ashley K Nensel, Steven Droho, Mara A Fattah, Soumitra Mokashi-Punekar, David I Swygart, Spencer T Burton, Greg W Schwartz, Jeremy A Lavine, Nathan C Gianneschi
Author Information
  1. Wonmin Choi: Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA. ORCID
  2. Ashley K Nensel: Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA. ORCID
  3. Steven Droho: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
  4. Mara A Fattah: Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA. ORCID
  5. Soumitra Mokashi-Punekar: Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
  6. David I Swygart: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. ORCID
  7. Spencer T Burton: Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA. ORCID
  8. Greg W Schwartz: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. ORCID
  9. Jeremy A Lavine: Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. ORCID
  10. Nathan C Gianneschi: Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA. ORCID

Abstract

Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in the developed world. Current therapy includes monthly intraocular injections of anti-VEGF antibodies, which are ineffective in up to one third of patients. Thrombospondin-1 (TSP1) inhibits angiogenesis via CD36 binding, and its down-regulated expression is negatively associated with the onset of nAMD. Here, we describe TSP1 mimetic protein-like polymers (TSP1 PLPs). TSP1 PLPs bind CD36 with high affinity, resist degradation, show prolonged intraocular half-lives (13.1 hours), have no toxicity at relevant concentrations in vivo (40 μM), and are more efficacious in ex vivo choroidal sprouting assays compared to the peptide sequence and Eylea (aflibercept), the current standard of care anti-VEGF treatment. Furthermore, PLPs exhibit superior in vivo efficacy in a mouse model for nAMD compared to control PLPs consisting of scrambled peptide sequences, using fluorescein angiography and immunofluorescence. Since TSP-1 inhibits angiogenesis by VEGF-dependent and independent mechanisms, TSP1 PLPs are a potential therapeutic for patients with anti-VEGF treatment-resistant nAMD.

References

  1. Ocul Surf. 2019 Jul;17(3):374-383 [PMID: 31173926]
  2. FASEB J. 2009 Oct;23(10):3368-76 [PMID: 19528255]
  3. Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17359-17364 [PMID: 31595626]
  4. Cell Rep. 2015 Dec 29;13(12):2663-70 [PMID: 26711334]
  5. Sci Rep. 2020 Aug 6;10(1):13206 [PMID: 32764602]
  6. Drugs. 2008;68(8):1029-36 [PMID: 18484796]
  7. Macromolecules. 2010;43(1):213-221 [PMID: 20871800]
  8. JAMA Ophthalmol. 2020 Dec 1;138(12):1234-1240 [PMID: 33057589]
  9. Sci Transl Med. 2015 Oct 14;7(309):309ra165 [PMID: 26468327]
  10. Polym Chem. 2014 Mar 21;5(6):1954-1964 [PMID: 24855496]
  11. Angew Chem Int Ed Engl. 2002 Nov 4;41(21):4035-7 [PMID: 12412073]
  12. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4761-5 [PMID: 1693777]
  13. Acta Ophthalmol. 2008 Aug;86(5):468-9 [PMID: 18752524]
  14. Adv Drug Deliv Rev. 2018 Feb 15;126:67-95 [PMID: 29339145]
  15. J Am Chem Soc. 2022 Mar 16;144(10):4383-4392 [PMID: 35238544]
  16. Br J Ophthalmol. 2006 Jan;90(1):48-54 [PMID: 16361667]
  17. Biomolecules. 2021 Feb 24;11(3): [PMID: 33668179]
  18. Polym Chem. 2013;41:3929-3933 [PMID: 24015154]
  19. Am J Pathol. 2012 Aug;181(2):570-82 [PMID: 22727957]
  20. Nat Commun. 2019 Aug 27;10(1):3860 [PMID: 31455772]
  21. Curr Biol. 2017 Feb 20;27(4):471-482 [PMID: 28132812]
  22. J Biol Chem. 2007 May 25;282(21):15404-15 [PMID: 17416590]
  23. Nat Chem. 2018 Jul;10(7):715-723 [PMID: 29713035]
  24. Nat Protoc. 2007;2(12):3247-56 [PMID: 18079725]
  25. Oncogenesis. 2018 Dec 21;7(12):98 [PMID: 30573731]
  26. Pharmaceutics. 2019 Jul 31;11(8): [PMID: 31370346]
  27. ACS Cent Sci. 2021 Dec 22;7(12):2063-2072 [PMID: 34963898]
  28. Nat Biotechnol. 2019 Oct;37(10):1186-1197 [PMID: 31427820]
  29. Nat Neurosci. 2012 Nov;15(11):1572-80 [PMID: 23001060]
  30. Pharmaceutics. 2021 Aug 20;13(8): [PMID: 34452268]
  31. Nat Neurosci. 2021 Jan;24(1):105-115 [PMID: 33230322]
  32. Sci Transl Med. 2022 Jun;14(647):eabj2177 [PMID: 35648811]
  33. Arch Ophthalmol. 2012 May;130(5):615-20 [PMID: 22232368]
  34. Science. 2004 Sep 3;305(5689):1466-70 [PMID: 15353804]
  35. J Am Chem Soc. 2014 Oct 29;136(43):15422-37 [PMID: 25314576]
  36. Chem Commun (Camb). 2020 Jun 23;56(50):6778-6781 [PMID: 32441281]
  37. Mol Pharm. 2019 Oct 7;16(10):4399-4404 [PMID: 31430156]
  38. Clin Ophthalmol. 2022 Mar 25;16:917-933 [PMID: 35368240]
  39. J Cell Biol. 1997 Aug 11;138(3):707-17 [PMID: 9245797]
  40. Front Med (Lausanne). 2018 May 01;5:125 [PMID: 29765959]
  41. Cold Spring Harb Perspect Med. 2012 May;2(5):a006627 [PMID: 22553494]
  42. Int J Mol Sci. 2020 Jun 29;21(13): [PMID: 32610682]
  43. Neuron. 2019 Nov 6;104(3):576-587.e11 [PMID: 31519460]
  44. Cell Rep. 2022 Jul 12;40(2):111040 [PMID: 35830791]
  45. Int J Mol Sci. 2021 Sep 30;22(19): [PMID: 34638935]
  46. Chem Sci. 2016 Feb 1;7(2):989-994 [PMID: 26925209]
  47. Lancet Glob Health. 2014 Feb;2(2):e106-16 [PMID: 25104651]
  48. J Neuroinflammation. 2022 Aug 8;19(1):203 [PMID: 35941655]
  49. N Engl J Med. 2011 May 19;364(20):1897-908 [PMID: 21526923]
  50. Acc Chem Res. 2020 Feb 18;53(2):400-413 [PMID: 31967781]
  51. J Am Chem Soc. 2004 Dec 8;126(48):15870-5 [PMID: 15571411]
  52. Prog Retin Eye Res. 2010 Nov;29(6):443-65 [PMID: 20398784]
  53. Endocrinology. 2010 Dec;151(12):5905-15 [PMID: 20881256]
  54. Invest Ophthalmol Vis Sci. 2019 Dec 2;60(15):5059-5069 [PMID: 31800964]

Grants

  1. R01 EY034486/NEI NIH HHS
  2. R01 EY031029/NEI NIH HHS
  3. P30 CA060553/NCI NIH HHS
  4. K08 EY030923/NEI NIH HHS
  5. R01 EY031329/NEI NIH HHS

MeSH Term

Animals
Mice
Humans
Ranibizumab
Angiogenesis Inhibitors
Thrombospondin 1
Macular Degeneration
Peptides

Chemicals

Ranibizumab
Angiogenesis Inhibitors
Thrombospondin 1
Peptides

Word Cloud

Created with Highcharts 10.0.0TSP1PLPsnAMDanti-VEGFvivoage-relatedmaculardegenerationintraocularpatientsThrombospondin-1inhibitsangiogenesisCD36polymerscomparedpeptideexhibitmousemodelNeovascularleadingcauseblindnessdevelopedworldCurrenttherapyincludesmonthlyinjectionsantibodiesineffectiveonethirdviabindingdown-regulatedexpressionnegativelyassociatedonsetdescribemimeticprotein-likebindhighaffinityresistdegradationshowprolongedhalf-lives131hourstoxicityrelevantconcentrations40μMefficaciousexchoroidalsproutingassayssequenceEyleaafliberceptcurrentstandardcaretreatmentFurthermoresuperiorefficacycontrolconsistingscrambledsequencesusingfluoresceinangiographyimmunofluorescenceSinceTSP-1VEGF-dependentindependentmechanismspotentialtherapeutictreatment-resistantproteomimeticanti-angiogenicactivityneovascular

Similar Articles

Cited By